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WE KNOW AN INCREASING AMOUNT ABOUT HOW WE LEARN AND 
DECIDE ABOUT THE EXTERNAL WORLD (STATES, REWARDS)

Learning models of the world



WE KNOW LESS ABOUT HOW PEOPLE FORM BELIEFS ABOUT 
THEMSELVES, AND HOW SELF-KNOWLEDGE GUIDES BEHAVIOUR

DID I MAKE A MISTAKE? 
IS MY MEMORY ACCURATE? 
AM I GIVING A GOOD TALK?

Learning models of ourselves



Defining metacognition

• “cognition about cognitive 
phenomena...” (Flavell, 1979)

Input Output

Self-reflection 

Recursive thought 

Introspection 

etc… 
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A primer on measuring metacognition 

BEHAVIOUR SECOND-ORDER 
REPORT

E.g. answer to 
exam question; 
response in a 
psychophysics 
experiment

E.g. confidence in 
getting the answer 
right



Confidence as core variable of interest for 
metacognition

crimson rather than scarlet. If enough candles are lit, you might even report
near certainty it’s crimson. All these reports reflect your increasing doxastic
confidence. But they also seem to reflect your increasing perceptual confidence.
A tablecloth doesn’t just look crimson or scarlet. It sometimes looks more likely
crimson than scarlet.

(3) While you’re at an optometrist’s office she asks you to identify letters on
an eye chart with the help of a series of lenses. At first, your experience will be
too blurry to give you much confidence that a particular letter is an E rather
than an F, B, or G. But as she improves your visual acuity you’ll report
increasing confidence. As a way of approximating this experience, try to
identify the letters below1:

1. This is a mere approximation, because when looking at the image on the left we’re inclined to
report that the image itself is blurred, but when looking at the optometrist’s eye chart we don’t
have the same inclination. When looking at the optometrist’s eye chart the blurriness seems to
be a feature of one’s relation to the eye chart—a feature of one’s perspective on the eye
chart—rather than a feature of the chart itself, perhaps because of depth and illumination cues.
Still, it’s a helpful approximation.

© 2016 Wiley Periodicals, Inc.
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Nelson & Narens (1990)

How does 
metacognition work?
= hard question…

Which processes 
support the formation 
of confidence in 
perception/action/
cognition?
= easier question



with thanks to Matan Mazor 

Type 2 receiver operating characteristic 
curves are a compact representation of 
the quality of confidence ratings


In general, the more different the 
confidence distributions for correct and 
for incorrect responses are, the more 
insight one has into the quality of 
individual decisions

Quantifying metacognition - type 2 ROCs

Clarke, Birdsall & Tanner (1959) J Acoust Soc Am 
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FIG. 5. Variation in measnred absorption coefficient with area at 2000 cps. 

paper are also shown. Withiu the same range of absorption 
coefficients, these two measurements coincide fairly well with 
each other. 

The details of this research will be published later in the 
Bulletin of the Kobayasi Institule of Physical Research. 

• V. L. Chrislet, J. Research Naœ1. Bur. Standards 13, 169-187 (1934). 
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Two Types of ROC Curves and Definitions 
of Parameters* 
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WO types of ROC curves which have appeared in the literature 
have not been clearly distinguished. Also, the notation for 

describing the parameters of these curves has been confusing and 
sometimes contradictory. As we are going to suggest a common 
notation for both types of curves we will defer discussion of the 
two types of ROC curves for the moment. 

The symbol d • has been defined • as (2E/No)« necessary for an 
ideal observer to reach a performance level specified graphically 
by a single point on an ROC curve. In general, it does not describe 
an entire ROC curve, but is unique for that particular point. 
Also, d' has defining operations which are not connected with the 
ROC curve. 

The symbol d• is also to be defined as a performance measure 
for a particular point on an ROC curve. In general, it does not 
have any other defining operations. It may be used in instances 
when it is impossible or impractical to specify the energy of the 
signal(s) or the form of the noise. As with d', two different points 
from a single ROC curve may have different values of dL 

Almost all ROC curves (certainly all of those which have 
appeared in the literature) are fit very well by a straight line when 
the data are plotted on normal-normal probability paper. Thus, 
the data can be closely approximated by assuming that the two 
hypotheses under test are normally distributed on some decision 
axis X. These distributions may or may not have equal variance. 
We wish to suggest the following two parameters to describe such 
ROC curves: (1) That value of dl which is obtained when the 
cutoff point on the decision axis is chosen such that the conditional 

probability of being correct for a decision is the same for both 
hypotheses. We will designate this value by (d•),. (2) The slope 
s of the ROC curve when plotted on normal-normal probability 
paper. The value of (d•)• may be read directly off the ROC plot 
on normal-normal paper. First, one takes that point for which the 
probability on the ordinate is equal to one minus the probability 
on the abscissa. '['he ordinate value, on the normal deviate scale, 
of this point minus the abscissa value, on the uormal deviate scale, 
of the point is equal to (d«)•. The slope of the curve is also taken 
in terms of the normal deviate scales. In the event that the slope 
is unity, the valne of d« is a constant for all points on a given 
ROC curve. 

Now let us distinguish two types of ROC curves. 
Type 1--The stimulus-conditional ROC curve: One example of 

this type of ROC curve is a plot of the probability of accepting 
the hypothesis of signal-plus-noise when, in fact, signal-plus- 
noise was presented, against the probability of accepting the 
hypothesis of signalsplus-noise when noise alone was presented. 
Thus, in typical notation, this is a plot of Ps.¾(A) against P•(A). 

Type 2--The response-conditional ROC curve: This ROC 
curve is the plot of the probability of an observer accepting his 
identification of a stimulus as being correct when it is, in fact, 
correct, against the probability of the observer accepting his 
identification of a stimnlus as correct when it is actually incorrect. 
This may be denoted as a plot of Pc(Y) against P•(Y). 

The similarities and differences of these two types of ROC curves 
may be made apparent by consideration of a simple example. 
Consider an ideal observer attempting to detect a signal known 
exactly in a background of white Gaussian noise. It has been shown a 
that the relevant decision axis is a likelihood ratio or some mono- 
tone transformation of this likelihood ratio, where l(x) 
P•(x). If we consider the transformation y= [1ogl(x)]/(2E/No)•, 
the two hypotheses are normally distributed, each with unit 
variance and a separation between the means equal to d'. 

A Type I ROC curve may be generated by varying a cutoff 
point, y= F', from plus infinity to minus infinity. For any cutoff 
point Y, 

Ps,v(A)= f•/•f•(y)dy and P•v(A)= f/•f•,(y)dy. 
As the slope for this particular curve is unity, we have, for all 
points on this curve, d•=d'= (2E/No)«. 

The Type 2 ROC curve is more complicated as it deals with the 
receiver's rating of confidence in his identification response. 
Thus, the curve will depend upon the particular value of Y 
utilized by the observer in deciding between the hypothesis of 
signal-plus-noise and the hypothesis of noise alone. For the 
particular example to be considered here, we will assume an ideal 
observer operating so as to maximize percent correct in distinguish- 
ing between a signal-plus-noise and noise alone when a priori 
probabilities are equal. With the transformation noted in the 
foregoing the ideal observer would use a cutoff point y=0, titat 
is, l(x) = 1. Thus, if y>0, this observer accepts the hypothesis that 
signal-plus-noise is present, and if y <0 he rejects this hypothesis. 
Percent correct? p(C), is defined in this case as (1/2)l•Paw(A) 
+œ•(CA)]. In the Type 2 ROC case, the observer is testing the 
two complementary hypotheses, "identification response correct" 
and "identification response incorrect." The observer's decision 
axis is again a likelihood ratio, in this instance, l•(x)=Pc(x)/ 
P•(x), where Pc(x) is the probability of the observation x given 
that the identification response made under some particular 
decision rule r was correct and P•(x) is similarly defined. In this 
example, the decision rule for making identification responses 
results in l•(x)=l(x) if y>0 and l,(x)=I/l(x) if y<0. Thus, 
letting w=ly], the distributions of the two hypotheses are 
given by 

f•(w)=0 if w<0, f•(W)=p(i)(2r) • 
if w>0 
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Generative model for confidence
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Generative model for confidence
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Individual differences in metacognition

Grey matter volume White matter integrity



The cerebral loci of differences in the capacity for 
introspection between individualsintrospection between individuals

Fleming et al., Science 2010

The ability to make a second-order judgment (on the veracity of a first-order judgment) 
varies from one person to the other.
It is deteriorated in patients with frontal lobe lesions, in particular in the uppermost frontal 
section (rostral).
C h b l i i h b l h i h i i f h b i iCan there be correlation with more subtle changes in the organization of the brain in 
normal subjects? 
Here, subjects engage in a difficult psychophysical task (detecting a patch of a slightly
hi h t t b t 2 )higher contrast between 2 screens ). 
This task is maintained close to the threshold to ensure an overall success rate of 71%.
After each trial, participants report their degree of confidence in their first response .

Isolating metacognition from performance

Fleming et al. (2010) Science

Performance titrated using a 2-down 1-up staircase 
32 participants 
600 trials per participant 
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expression of this behavioral trait. In a whole-
brain analysis of white-matter microstructure
(21), we found that FA (a measure of white-
matter integrity) in the genu of the corpus
callosum was positively dependent on Aroc (Fig.
4) (P < 0.05, corrected for multiple comparisons).
This specific subdivision of the corpus callosum
contains white-matter fibers connected with the
anterior and orbital PFCs in humans (25), con-
sistent with metacognitive ability being depen-
dent not only on anterior prefrontal gray matter
but also on reciprocal projections to and from this
area. Neither objective performance (stimulus con-
trast or d′) nor overall confidence (Broc) correlated
with gray-matter volume or white-matter FA
elsewhere in the brain (P > 0.05, corrected for
multiple comparisons; see tables S2 and S3 for
uncorrected correlations). We note that an absence
of structural correlations with these parameters
may have been due to our design deliberately
minimizing variability in both d′ and Broc to isolate
the neural correlates of introspective ability (Aroc).

One concern is that the structural covariation
that we observed may have been potentially con-
founded by differences in perceptual ability.
Good perceptual ability may be reflected in the
staircase procedure converging on consistently
low values for stimulus contrast for a given in-
dividual. Therefore, we carried out control analy-
ses (table S4) (21) to rule out this alternative
explanation. These results demonstrated signifi-
cant correlations of gray matter and FAwith Aroc
in the anterior PFC when controlling for changes
in task parameters and an absence of correlations
with task parameters themselves. Thus, the structure-
behavior correlations we observed here are unlikely
to be due to low-level differences in performance,
but instead relate to underlying differences in in-
dividual metacognitive ability.

How might these regions contribute to meta-
cognition? Anterior subdivisions of the PFC have

been implicated in high-level control of cognition
(19, 20, 26, 27) and are well placed to integrate
supramodal perceptual information with decision
output (28), a process thought to be key for
metacognitive sensitivity (1). Dorsolateral pre-
frontal activity increases under conditions in
which subjective reports match objective percep-
tual performance (29), suggesting a computa-
tional role in linking performance to confidence.
Consistent with prefrontal gray-matter volume
playing a causal role in metacognition, patients
with lesions to the anterior PFC show deficits in
subjective reports as compared with controls,
after factoring out differences in objective per-
formance (16). Furthermore, impairing dorso-
lateral PFC function with theta-burst transcranial
magnetic stimulation compromises the metacog-
nitive sensitivity of subjective reports of aware-
ness but leaves underlying task performance intact
(30). Together with the present work, these find-
ings suggest a central role for anterior and dor-
solateral PFC in metacognitive sensitivity. Our
present findings may reflect innate differences in
anatomy or, alternatively, may reflect the effects
of experience and learning, as has been found in
the sensorimotor domain (14, 15). This raises the
tantalizing possibility of being able to “train”meta-
cognitive ability by harnessing underlying neural
plasticity in the regions that we identify here (31).

Our main finding is a delineation of a notice-
ably focal anatomical substrate that predicts in-
terindividual variability in metacognitive ability.
As with any correlational method, we cannot es-
tablish whether the covariation we observed be-
tween brain structure and metacognition reflects a
causal relation. However, given a wealth of evi-
dence for changes in gray-matter volume within
and between individuals associated with a range of
skills, we propose that underlying differences in
metacognitive ability are similarly dependent on
large-scale brain anatomy. Our data provide an ini-

tial window to the biological basis of the ability to
link objective performance to subjective confidence.
The demonstration that this ability may be depen-
dent on local and phylogenetically recent prefrontal
anatomy is consistent with a conjecture that meta-
cognitive function has been selected for during
evolution (32), facilitating computations that allow
us to introspect about self-performance.
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Fig. 4. White-matter
microstructure correlated
with introspective ability.
(A) Statistical (T) map of
voxelwise correlations be-
tween FA and Aroc, thresh-
olded at T > 3 for display
purposes and overlaid on
sagittal (left) and axial
(right) slices of the aver-
age FA image across par-
ticipants, at the x and z
coordinates indicated. A
region within the genu of
theanteriorcorpuscallosum
showed a correlation be-
tween FA and metacog-
nitive ability that was
statistically significant
after correcting for mul-
tiple comparisons (P <
0.05). (B) Plot of FA in
the anterior corpus callosum cluster against both Aroc and d′, indicating that the correlation with
metacognitive ability was independent of task performance.
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The ability to make a second-order judgment (on the veracity of a first-order judgment) 
varies from one person to the other.
It is deteriorated in patients with frontal lobe lesions, in particular in the uppermost frontal 
section (rostral).
C h b l i i h b l h i h i i f h b i iCan there be correlation with more subtle changes in the organization of the brain in 
normal subjects? 
Here, subjects engage in a difficult psychophysical task (detecting a patch of a slightly
hi h t t b t 2 )higher contrast between 2 screens ). 
This task is maintained close to the threshold to ensure an overall success rate of 71%.
After each trial, participants report their degree of confidence in their first response .Isolating metacognition from performance

function have emphasized a role for anterior
(rostrolateral) prefrontal cortex (PFC) in carrying
out second-order operations on internally gen-
erated information (19, 20), a process necessary
formetacognition.We hypothesized that the local
structure of these regions (both gray-matter vol-
ume and white-matter integrity) might reflect an
individual’s metacognitive ability.

We studied 32 healthy human participants
while they made a series of visual judgements
(21). The difficulty of the visual judgement was
varied on a per-participant basis to keep per-
formance at a constant level (71%), near sensory
threshold. In addition to asking participants to
make these objective perceptual judgements, we
also asked them to provide ratings of confidence
in their decisions after each trial (Fig. 1). We then
used these ratings to determine metacognitive
ability at an individual level through the construc-
tion of type II receiver operating characteristic
(ROC) curves (Fig. 2A) (21–23). The ROCmodel
provided an excellent fit to our data across par-
ticipants (mean explained variance R2 = 0.97 T
0.023). The area between the major diagonal and
an individual’s ROC curve is a measure of the
ability to link confidence to perceptual perform-
ance (Aroc). We found considerable variation
across individuals in metacognitive ability (Aroc =
0.55 to 0.75), despite underlying task perform-
ance being held constant (proportion correct: 70
to 74%); furthermore, these measures were un-
correlated (Pearson’s correlation coefficient r =
–0.21, P = 0.24). To establish whether this
variability was stable, we split data from each
participant into two halves and computed the
test-retest reliability of the two sets. This analysis
revealed intraparticipant consistency in Aroc (r =
0.69, P = 0.00001) (fig. S2).

Having quantified interindividual variability
in introspection, we then asked whether this var-
iability in introspective judgements was predicted
by variability in brain structure using two distinct
measures: gray-matter volume measured from T1-
weighted anatomical images and the fractional
anisotropy (FA) of white matter measured from
diffusion tensor images. Our analysis examined the
possible relation between brain structure and four
different measures: the metacognitive ability (Aroc)
of our participants, objective performance on the
perceptual task (sensitivity, d′, and criterion, c), and
the tendency to use high or low confidence re-
sponses on individual trials (Broc) [see supporting
online material (SOM) methods section for de-
tails]. Having removed the potentially confound-
ing factors (24) of overall brain size and gender
(as regressors of no interest), we found that an in-
dividual’s metacognitive ability (Aroc) was signif-
icantly correlated with gray-matter volume in the
right anterior PFC (Fig. 3A) [Brodmann area (BA)
10; peak voxel coordinates: [24, 65, 18]; tmax =
4.8; P < 0.05, corrected for multiple compari-
sons]. Furthermore, gray-matter volume in this re-
gion did not correlate with task performance, as
indexed by d′ (Fig. 3B) (r = 0.15, P = 0.42), or
overall confidence (Broc)( r = –0.023, P = 0.90).

Gray-matter volume in a homologous region in
the left anterior PFC was also correlated with
Aroc but did not survive correction for multiple
comparisons across the brain volume. Details
of this and other clusters that did not survive a
whole-brain correction are listed in table S2.
Thus, variability in introspective judgements of
performance on a simple visual-detection task
was predicted by variability in the anatomical
structure of the anterior PFC (BA 10), indepen-
dently of both objective performance and level
of confidence. Finally, whereas our primary ques-
tion addressed positive dependence of gray matter
on Aroc, we also found that the left inferior tem-

poral gyrus showed a negative correlation with
metacognitive sensitivity (Fig. 3A) (coordinates:
[–56, –30, –26]; tmax = 4.66; P < 0.05, corrected
for multiple comparisons), accompanied by a sim-
ilar region on the right that did not survive cor-
rection for multiple comparisons (see table S2 for
full details and coordinates).

After we established that gray-matter volume
was predictive of Aroc, we next analyzed white-
matter microstructure. If the structure of the an-
terior PFC is functionally related to metacognitive
performance, we hypothesized that white-matter
tracts connected with this region would also
show a similar microstructural correlation with
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clusters at P < 0.001, uncorrected. (B) Plot of gray-matter volume in the right BA 10 cluster against both
Aroc and d′ (see SOM methods for full details), indicating that the correlation with metacognitive ability
was independent of task performance. a.u., arbitrary units.
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increasing the maturation of miR-16 from its
precursor pre/pri–miR-16. Raphe additionally
responds to chronic fluoxetine treatment by
releasing S100b, which in turn acts on the
noradrenergic neurons of the locus coeruleus. By
lowering miR-16 levels, S100b unlocks the ex-
pression of serotonergic functions in this nor-
adrenergic brain area. Our pharmacological and
behavioral data thus posit miR-16 as a central
effector that regulates SERT expression and
mediates the adaptive response of serotonergic
and noradrenergic neurons to fluoxetine treatment.
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Relating Introspective Accuracy to
Individual Differences in
Brain Structure
Stephen M. Fleming,1*† Rimona S. Weil,1,2* Zoltan Nagy,1 Raymond J. Dolan,1 Geraint Rees1,2

The ability to introspect about self-performance is key to human subjective experience, but the
neuroanatomical basis of this ability is unknown. Such accurate introspection requires discriminating
correct decisions from incorrect ones, a capacity that varies substantially across individuals.
We dissociated variation in introspective ability from objective performance in a simple perceptual-
decision task, allowing us to determine whether this interindividual variability was associated with a
distinct neural basis. We show that introspective ability is correlated with gray matter volume in the
anterior prefrontal cortex, a region that shows marked evolutionary development in humans. Moreover,
interindividual variation in introspective ability is also correlated with white-matter microstructure
connected with this area of the prefrontal cortex. Our findings point to a focal neuroanatomical substrate
for introspective ability, a substrate distinct from that supporting primary perception.

Our moment-to-moment judgments of the
outside world are often subject to intro-
spective interrogation. In this context,

introspective or “metacognitive” sensitivity refers

to the ability to discriminate correct from in-
correct perceptual decisions (1), and its accuracy
is essential for the appropriate guidance of
decision-making and action (2, 3). For example,
low confidence that a recent decision was correct
may prompt us to reexamine the evidence or seek
a second opinion. Recently, behavioral studies
have begun to quantify metacognitive accuracy
following simple perceptual decisions and to
isolate variations in this ability: A decision may
be made poorly, yet an individual may believe

that his or her performance was good, or vice
versa (4–8). Whereas previous work has inves-
tigated how confidence in perceptual decisions
varies from trial to trial (9, 10), little is known
about the biological basis of metacognitive abil-
ity, defined here as how well an individual’s con-
fidence ratings discriminate correct from incorrect
decisions over time. We hypothesized that in-
dividual differences in metacognitive ability
would be reflected in the anatomy of brain re-
gions responsible for this function, in line with
similar associations between brain anatomy and
performance in other cognitive domains (11–15).

We objectively quantified variability in meta-
cognitive sensitivity between individuals and
then related these interindividual differences to
brain structure measured with magnetic reso-
nance imaging (MRI). This approach was mo-
tivated by observations that individual differences
in a range of skills—such as language (11),
decision-making (12), and memory (13)—are
consistently associated with variation in healthy
brain anatomy. Our experimental design dis-
sociated a quantitative measure of metacognitive
accuracy, Aroc (which is specific to an individual),
from both objective task performance and subjec-
tive confidence (which both vary on a trial-by-trial
basis). Earlier patient studies describe candidate
brain regions in which damage is associated with
poor introspective ability: in particular, a prefrontal-
parietal network (16–18). Theories of prefrontal

1Wellcome Trust Centre for Neuroimaging, University College
London, 12 Queen Square, London WC1N 3BG, UK. 2Institute
of Cognitive Neuroscience, University College London, 17
Queen Square, London WC1N 3AR, UK.

*These authors contributed equally to this work.
†To whom correspondence should be addressed. E-mail:
s.fleming@fil.ion.ucl.ac.uk

Fig. 1. Behavioral task. Participants com-
pleted a two-alternative forced-choice task
that required two judgments per trial: a
perceptual response followed by an es-
timate of relative confidence in their deci-
sion. The perceptual response indicated
whether the first or second temporal in-
terval contained the higher-contrast (pop-
out) Gabor patch (highlighted here with a
dashed circle that was not present in the
actual display), which could appear at any one of six locations around a central
fixation point. Pop-out Gabor contrast was continually adjusted with the use of
a staircase procedure to maintain ~71% performance. Confidence ratings were

made using a one-to-six scale, with participants encouraged to use the whole scale
from one = low relative confidence to six = high relative confidence. The black
square in the rightmost panel indicates the choice made in the metacognitive task.
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Right frontopolar cortex activity correlates with reliability of retrospective rating
of confidence in short-term recognition memory performance
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a b s t r a c t

Human memory systems contain self-monitoring mechanisms for evaluating their progress. People can
change their learning strategy on the basis of confidence in their performance at that time. However, it
has not been fully understood how the brain is engaged in reliable rating of confidence in past recogni-
tion memory performance. We measured the brain activity by fMRI while healthy subjects performed
a visual short-term recognition memory test and then rated their confidence in their answers as high,
middle, or low. As shown previously, their behavioral performance in the confidence rating widely var-
ied; some showed a positive confidence–recognition correlation (i.e., “rate reliably”) while others did
not. Among brain regions showing greater activity during rating their confidence relative to during a
control, non-metamemory task (discriminating brightness of words), only a posterior-dorsal part of the
right frontopolar cortex exhibited higher activity as the confidence level better correlated with actual
recognition memory performance. These results suggest that activation in the right frontopolar cortex is
key to a reliable, retrospective rating of confidence in short-term recognition memory performance.

© 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

1. Introduction

The ability to monitor and evaluate one’s own memory per-
formance is an outstanding feature of the human memory system
(Nelson and Narens, 1990). This ability is one of the metacognitive
processes that leads to self-consciousness (Nelson, 1996) and pro-
vides information for self-directed control processes (Flavell, 1979;
Nelson and Narens, 1990; Koriat and Goldsmith, 1996; Smith et al.,
2003). For example, a lack of confidence following one’s own mem-
ory retrieval often redirects behavior, such as reallocation of study
time during learning and changes of retrieval strategy (Nelson and
Leonesio, 1988; Nelson and Narens, 1990). Although subjective
confidence in one’s own memory retrieval performance usually
correlates with actual memory performance, that degree of the

∗ Corresponding author at: Cognitive Neuroscience Section, Department of Behav-
ioral and Brain Sciences, Primate Research Institute, Kyoto University, 41-2 Kanrin,
Inuyama, Aichi 484-8506, Japan. Tel.: +81 568 63 0558.

E-mail address: katsuki@pri.kyoto-u.ac.jp (K. Nakamura).

correlation, hereafter referred to in this article as “reliability”, var-
ied substantially across conditions and individuals (Thompson and
Mason, 1996; Kelemen et al., 2000). As reliable confidence ensures
effective self-control, high reliability is important in guiding one’s
own behavior adaptively and should be one of the fundamental
features of metamemory throughout the evolution of the capacity.

In recent years, some functional magnetic resonance imaging
(fMRI) studies have provided findings related to brain mechanisms
associated with both processes and subjective level of retrospective
confidence in recognition memory: an fMRI study reported activa-
tion in the bilateral lateral parietal, insula, superior frontal, dorsal
medial prefrontal, and right orbitofrontal regions during confi-
dence assessment compared to during recognition in a face–name
associative paradigm (Chua et al., 2006). Neural substrates of
subjective confidence level in recognition memory have been sug-
gested by several studies, in which high confidence at recognition
was found to activate the anterior and posterior cingulate cortex
bilaterally, along with medial temporal regions, in comparison to
activations occurring with low confidence (Chua et al., 2006; Moritz
et al., 2006; Kim and Cabeza, 2007).

0168-0102/$ – see front matter © 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
doi:10.1016/j.neures.2010.07.2041

Behavioral/Cognitive

Anatomical Coupling between Distinct Metacognitive
Systems for Memory and Visual Perception

Li Yan McCurdy,1 Brian Maniscalco,1 Janet Metcalfe,1 Ka Yuet Liu,2 Floris P. de Lange,3 and Hakwan Lau1,3

1Department of Psychology, Columbia University, New York, New York 10027, 2Department of Sociology, University of California, Los Angeles, Los
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A recent study found that, across individuals, gray matter volume in the frontal polar region was correlated with visual metacognition
capacity (i.e., how well one’s confidence ratings distinguish between correct and incorrect judgments). A question arises as to whether the
putative metacognitive mechanisms in this region are also used in other metacognitive tasks involving, for example, memory. A novel
psychophysical measure allowed us to assess metacognitive efficiency separately in a visual and a memory task, while taking variations in
basic task performance capacity into account. We found that, across individuals, metacognitive efficiencies positively correlated between
the two tasks. However, voxel-based morphometry analysis revealed distinct brain structures for the two kinds of metacognition.
Replicating a previous finding, variation in visual metacognitive efficiency was correlated with volume of frontal polar regions. However,
variation in memory metacognitive efficiency was correlated with volume of the precuneus. There was also a weak correlation between
visual metacognitive efficiency and precuneus volume, which may account for the behavioral correlation between visual and memory
metacognition (i.e., the precuneus may contain common mechanisms for both types of metacognition). However, we also found that gray
matter volumes of the frontal polar and precuneus regions themselves correlated across individuals, and a formal model comparison
analysis suggested that this structural covariation was sufficient to account for the behavioral correlation of metacognition in the two
tasks. These results highlight the importance of the precuneus in higher-order memory processing and suggest that there may be
functionally distinct metacognitive systems in the human brain.

Introduction
What is the neural basis of metacognition, i.e., the introspective
ability to monitor one’s own mental processes (Metcalfe and
Shimamura, 1994; Shimamura, 2008)? In a recent study, Fleming
et al. (2010) reported a positive correlation between individuals’
metacognitive capacity and anterior prefrontal cortex (aPFC)
gray matter volume. Metacognitive capacity was quantified by
measuring how well one’s trial-by-trial confidence judgments
discriminate between correct and incorrect responses on psycho-
physical tasks (Galvin et al., 2003).

One important question that arises is whether such putative
metacognitive mechanisms in the aPFC are task specific or not.
On one hand, the PFC has interconnections with virtually all
sensory, motor, and memory systems (Miller and Cohen, 2001),
so it is possible that the structural correlates in the aPFC reported
by Fleming et al. (2010) reflect a general mechanism for various
kinds of metacognitive behavior. Supporting this notion, Song et

al. (2011) recently demonstrated a positive behavioral correlation
between metacognitive capacities on two different visual tasks.
Using different task paradigms and methodology, other studies
also support this claim (Schraw et al., 1995; Veenman et al., 1997;
Schraw and Nietfeld, 1998; Veenman and Verheij, 2003;
Veenman and Beishuizen, 2004). However, there is also empirical
evidence and theoretical ideas to the contrary, suggesting distinct
mechanisms involved with different kinds of metacognition
(Glaser et al., 1992; Kelemen et al., 2000; Weaver and Kelemen,
2002; Schnyer et al., 2004; Pannu et al., 2005).

In this study, we tested whether metacognitive capacity on a
word memory task and a visual perception task was behaviorally
correlated across individuals, and whether they depended on the
same neural structures. To do so, a technical challenge had to be
overcome. It is known that metacognitive capacity is constrained
by basic task performance (e.g., visual discrimination accuracy)
(Galvin et al., 2003; Rotello et al., 2008). Therefore, measure-
ments of memory and visual metacognition could be contami-
nated by variations in basic task performances. In the study by
Fleming et al. (2010), this problem was circumvented by titrating
the physical stimulus to keep basic visual task performance con-
stant. However, such titration is relatively difficult to achieve in a
memory task.

Here we used a recently developed psychophysical measure of
metacognitive capacity to address this problem (Maniscalco and
Lau, 2012). This new measure, known as meta-d!, has the advan-
tage of being expressed in the same units as the signal-to-noise
ratio units for the standard signal-detection theoretic measure d!
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A B S T R A C T

The ability to introspectively evaluate our experiences to form accurate metacognitive beliefs, or insight, is an
essential component of decision-making. Previous research suggests individuals vary substantially in their level
of insight, and that this variation is related to brain volume and function, particularly in the anterior prefrontal
cortex (aPFC). However, the neurobiological mechanisms underlying these effects are unclear, as qualitative,
macroscopic measures such as brain volume can be related to a variety of microstructural features. Here we
leverage a high-resolution (800 µm isotropic) multi-parameter mapping technique in 48 healthy individuals to
delineate quantitative markers of in vivo histological features underlying metacognitive ability. Specifically, we
examined how neuroimaging markers of local grey matter myelination and iron content relate to insight as
measured by a signal-theoretic model of subjective confidence. Our results revealed a pattern of microstructural
correlates of perceptual metacognition in the aPFC, precuneus, hippocampus, and visual cortices. In particular,
we extend previous volumetric findings to show that right aPFC myeloarchitecture positively relates to
metacognitive insight. In contrast, decreased myelination in the left hippocampus correlated with better
metacognitive insight. These results highlight the ability of quantitative neuroimaging to reveal novel brain-
behaviour correlates and may motivate future research on their environmental and developmental under-
pinnings.

Introduction

The metacognitive capacity for self-monitoring is at the core of
learning and decision-making (Flavell, 1979). As a general capacity,
metacognition is thought to enable the flexible monitoring and control
of perception, memory, and other cognitive processes (Fernandez-
Duque et al., 2000). An efficient approach to quantifying this ability lies
in the application of signal-detection theory to estimate the sensitivity
of self-reported confidence to objective discrimination performance
(Fleming and Lau, 2014). Individual differences in metacognitive
sensitivity thus quantified are related to the morphology, function,
and connectivity of the anterior prefrontal cortex (aPFC), precuneus,
and other cortical areas (Fleming and Dolan, 2012). Here, we expand
on these findings using a recently developed multi-parameter mapping
(MPM) and voxel-based quantification (VBQ) technique to better

elucidate the neurobiological mechanisms underpinning these effects.
The volume and function of the anterior prefrontal cortex (aPFC) and

precuneus have repeatedly been related to metacognitive ability (Fleming
et al., 2014, 2012, 2010a; McCurdy et al., 2013; Sinanaj et al., 2015).
Notably, several studies found a positive relationship between right aPFC
volume and metacognition (Fleming et al., 2010a; McCurdy et al., 2013;
Sinanaj et al., 2015). While convergent evidence from anatomical, lesion-
based, and functional connectivity studies suggest that the right aPFC is
specific to perceptual metacognition, metacognition for memory has
instead been related to midline cortical (e.g., mPFC and PCC/precuneus)
and hippocampal structures (Baird et al., 2013; Fleming et al., 2014,
2012; McCurdy et al., 2013). Although these studies suggest that the
ability to introspect on perception and memory depends on the develop-
ment of a neural mechanism involving both domain-specific and general
aspects, the underlying neurobiology driving the relationship between

http://dx.doi.org/10.1016/j.neuroimage.2017.02.008
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Medial and Lateral Networks in Anterior Prefrontal Cortex
Support Metacognitive Ability for Memory and Perception
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Convergent evidence indicates that frontopolar Brodmann area 10, and more generally the anterior prefrontal cortex (aPFC), supports the
human capacity to monitor and reflect on cognition and experience. An important unanswered question, however, is whether aPFC is a homo-
geneous region that supports a general-purpose metacognitive ability or whether there could be regional specialization within aPFC with respect
to specific types of metacognitive processes. Previous studies suggest that the lateral and medial subdivisions within aPFC may support meta-
cognitive judgments of moment-to-moment perceptual processes and assessments of information from memory stored over longer time scales,
respectively. Here we directly compared intraindividual variability in metacognitive capacity for perceptual decisions and memorial judgments
and used resting-state functional connectivity (rs-fcMRI) to relate this variability to the connectivity of the medial and lateral regions of aPFC. We
found a behavioral dissociation in metacognitive ability for perceptual and memorial judgments. Furthermore, functional connectivity analysis
revealed distinct patterns of connectivity that correlated with individual differences in each domain. Metacognitive ability for perceptual deci-
sions was associated with greater connectivity between lateral regions of aPFC and right dorsal anterior cingulate cortex, bilateral putamen, right
caudate, and thalamus, whereas metacognitive ability for memory retrieval predicted greater connectivity between medial aPFC and the right
central precuneus and intraparietal sulcus/inferior parietal lobule. Together, these results suggest that an individual’s capacity for accurate
introspection in the domains of perception and memory is related to the functional integrity of unique neural networks anchored in the medial
and lateral regions of the aPFC.

Introduction
Successful decision-making and action depend on accurately
evaluating the success of basic cognitive processes that contribute
to thought and behavior, a capacity known as “metacognition”
(Metcalfe and Shimamura, 1994). Convergent evidence indicates
that the frontopolar cytoarchitectonically defined Brodmann
area 10 (BA 10), and more generally the anterior prefrontal cortex
(aPFC), is a critical part of the neuroanatomical basis of metacog-
nitive thought. Supporting a contribution to higher-level cognition,
aPFC has shown substantial expansion in humans compared with
nonhuman primates (Öngür et al., 2003). Furthermore, aPFC is the
only prefrontal region that is almost exclusively connected to supra-
modal cortex, placing it at the nexus of an information processing
hierarchy in which the outputs of lower-level operations may be
integrated and evaluated (Christoff and Gabrieli, 2000; Ramnani
and Owen, 2004). Consistent with a role of aPFC in metacognition,
patients with traumatic injury to this region display a variety of

metacognitive deficits, such as an inability to monitor disease symp-
toms or accurately appraise their own cognitive functioning (Belyi,
1987; Joseph, 1999). Furthermore, structural and functional varia-
tion in aPFC has been shown to predict variance in metacognitive
ability within the healthy adult population (Fleming et al., 2010,
2012).

In recent years, neuroimaging and cytoarchitectonic studies
have begun to establish the existence of functional subdivisions
within aPFC, with a primary differentiation between medial and
lateral regions (e.g., Gilbert et al., 2006). An important question is
whether these subdivisions of aPFC play differential roles in
specific types of metacognitive processes. One possibility is
that metacognitive evaluations of memorial or perceptual in-
formation involve medial and lateral aPFC, respectively. An
accumulating number of studies have linked lateral aPFC to
metacognitive evaluations of dynamic perceptual processes
(Fleming et al., 2010, 2012; Fleming and Dolan, 2012). In con-
trast, medial aPFC has been widely implicated in metacognitive
assessments of memory retrieval, particularly for prospective
“feeling-of-knowing” judgments (e.g., Schnyer et al., 2005), but
also for retrospective confidence ratings (e.g., Moritz et al., 2006;
Modirrousta and Fellows, 2008; Chua et al., 2009), and “reality
monitoring” tasks (distinguishing whether a memory was inter-
nally or externally generated) (Simons et al., 2006, 2008). Fur-
thermore, a recent study (McCurdy et al., 2013) found that gray
matter volume in neuroanatomically distinct regions of the lat-
eral aPFC and precuneus covaried with metacognitive ability for
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to the OFC, ACC, MFPC, DLPFC, and TP,
which is closely resemble those in the hu-
man FP (area 10p). However, rich con-
nections with the Amyg were only found
in human FP.

Discussion
To the best of our knowledge, this is the
first study to parcellate the human FP
based on anatomical connection patterns
and to elucidate the anatomical and func-
tional connectivity patterns of the human
FP at the subregional level. The results
show that the human FP can be reproduc-
ibly subdivided into FPo, FPl, and FPm
subregions. Each FP subregion has spe-
cific anatomical and functional connec-
tivity patterns, and the three subregions
are involved in the SEN, CPN, and DMN,
respectively. These findings may improve our understanding of
FP connectivity and function at the level of subregions.

Method consideration
In the present study, we parcellated the human FP based on inter-
regional anatomical connection patterns derived from DTT,
which has been used extensively in previous parcellation studies
of the human medial frontal cortex (Johansen-Berg et al., 2004),
cingulate cortex (Beckmann et al., 2009), thalamus (Behrens et
al., 2003b), and Amyg (Bach et al., 2011). However, one should
bear in mind that the traditional DTT method is not the best one
for accurately characterizing fiber directions (Jones et al., 2012);
more plausible methods should be developed and used to parcel-
late human brain regions in vivo, such as parcellation based on
the orientation distribution functions derived from the high an-
gular resolution diffusion imaging data.

Spatial constraints have been used to reduce discontinuous vox-
els in parcellation results (Tomassini et al., 2007; Mars et al., 2012).
Here, we did not place any spatial constraints on our parcellation
scheme because the spectral clustering algorithm makes use of the
eigenvectors of the similarity matrix as the feature for clustering, and
this method is less sensitive to spatial distance effects than other
clustering methods, such as the k-means algorithm (Ng et al., 2002).
Moreover, how to balance connectivity information and spatial dis-
tance information in clustering when spatial constraints are included
is still an open question. Here, we used MPMs to show the parcella-
tion results for each FP subregion; this method could be effective in
reducing discontinuous voxels with low probabilities. The spatially
contiguous subregions also support the validity of our method.

FP subregions
In the present study, the human FP corresponds to area 10p, a
highly differentiated cortical area with unique cytoarchitectonic
characteristics (Ongür et al., 2003). However, as mentioned in
Introduction, tract tracing and functional neuroimaging studies
have suggested the existence of FP subregions. Ray and Price
(1992) subdivided the rat FP into medial and lateral subregions
based on thalamocortical connection patterns. The FP of nonhu-
man primates has been described as consisting of three subre-
gions, FPm, FPl, and FPo, based on their different anatomical
connection patterns (Petrides and Pandya, 2007; Burman et al.,
2011).

Compared with the animal FP, the human FP has undergone
great evolutionary expansion and exhibits a lower cell density,

richer dendritic spines, and more connections with the associa-
tion cortices (Semendeferi et al., 2001). Gilbert et al. (2006b)
found different activation characteristics for the lateral and me-
dial portions of the human FP and further subdivided the human
FP into lateral, anteromedial, and posteromedial subregions
based on a meta-analysis of task activations (Gilbert et al., 2006).
Based on anatomical connection patterns, we parcellated the hu-
man right FP into the orbital, medial, and lateral subregions and
validated this parcellation scheme by parcellation of the left FP
and through the use of another independent set of imaging data.
The fact that our parcellation results are not completely consis-
tent with those of Gilbert et al. (2006) can be ascribed to the
differences in imaging measures, the FP definition, and parcella-
tion methods between the two studies.

Connectivity profiles of the FPo
We found that the FPo is anatomically connected with the OFC,
TP, and Amyg and that it is functionally correlated with the OFC
and subgenual ACC. The FPo connects with the OFC through the
fronto-orbitopolar tract and with the TP and Amyg through the
uncinate fasciculus, which are consistent with a DTT study in
humans (Catani et al., 2012) and tract tracer studies in animals
(Terreberry and Neafsey, 1987; Neafsey, 1990; Hurley et al.,
1991). All of these brain regions are involved in the processing of
social and emotional information. Each of these brain regions has
been shown to be sensitive to different social or emotional tasks,
and each of these tasks induced activation of different combi-
nations of these brain regions. For example, the OFC is sensi-
tive to reward-based decision making (Bechara et al., 1999;
Boorman et al., 2009; FitzGerald et al., 2009; Elliott et al.,
2010), the subgenual ACC is sensitive to negative emotional
stimuli (Butler et al., 2005), the Amyg serves in the evaluation

Figure 4. Anatomical connectivity patterns (top row) and fingerprints (bottom row) of the FP subregions. The FP subregions are
shown in different colors (FPo, yellow; FPl, red; FPm, blue). The small polar plots are the individual parts of the main figure. L, Left;
R, right.

Table 2. Averaged normalized anatomical and functional connection strength
between FP subregions and target regions

FP
subregions

OFC Amyg TP DLPFC ACC MPFC

AC FC AC FC AC FC AC FC AC FC AC FC

Right FPo 0.425 0.491 0.348 0.254 0.600 0.307 0.029 0.469 0.053 0.240 0.114 0.448
Right FPl 0.018 0.627 0.108 0.331 0.160 0.452 0.580 0.853 0.274 0.472 0.317 0.765
Right FPm 0.098 0.456 0.059 0.338 0.035 0.405 0.127 0.606 0.539 0.574 0.606 0.893
Left FPo 0.473 0.486 0.235 0.129 0.591 0.394 0.109 0.488 0.066 0.236 0.094 0.369
Left FPl 0.064 0.669 0.086 0.307 0.153 0.532 0.763 0.934 0.326 0.419 0.107 0.717
Left FPm 0.094 0.449 0.055 0.306 0.102 0.401 0.069 0.622 0.598 0.553 0.662 0.873

AC, Anatomical connection; FC, functional connectivity.
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Metacognitive ability was quantified by the interrelationship of the confidence rating and the accuracy of visual judg-
ments using the type II receiver operating characteristic (ROC) curve (Fig. 1c) (Galvin et al., 2003; Kornbrot, 2006; Fleming
et al., 2010). The type II ROC curve characterized the probability of being correct for a given level of confidence. To construct
the ROC curve, p (confidence = i | correct) and p (confidence = i | incorrect) were calculated for all i, and were then trans-
formed into cumulative probabilities and plotted against each other. The area underlying the ROC curve quantified the meta-
cognitive ability. This area was calculated by the sum of the area between the ROC curve and the diagonal (dark green1 area

in Fig. 1c) and the area of the half-square triangle (light green area in Fig. 1c): AROC ¼ 0:25
P6

i¼1 Yiþ1 # Xið Þ2 # Yi # Xiþ1ð Þ2
h i

þ 0:5

(Kornbrot, 2006). The mean confidence rating was also calculated for each participant in each task. It reflects the bias an indi-
vidual has towards using higher or lower confidence ratings. The mean confidence rating correlates very well with the confi-

dence bias reflected by the ROC curve: BROC ¼ ln
P3

i¼1 Yiþ1 # Xið Þ2 # Yi # Xiþ1ð Þ2
h i! .P6

i¼4 Yiþ1 # Xið Þ2 # Yi # Xiþ1ð Þ2
h i"
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Fig. 1. Schematic depiction of experiment paradigm. (a) Participants made a two-interval forced choice judgment on which temporal interval contained the
grating that popped out in contrast (task one) or orientation (task two). Following their objective perceptual judgment, participants also provided a rating of
confidence in their visual performance. (b) To induce uncertainty about the visual judgments, the parameter (contrast in task one, orientation in task two) of
the pop-out grating was varied in the 2-up-1-down staircase fashion to keep each participant’s performance near threshold. The participants’ visual
performance was evaluated by the average parameter of the pop-out grating, i.e., the discrimination threshold. (c) Metacognitive ability was quantified by
the interrelationship between confidence ratings and the accuracy of visual judgments using the type II receiver operating characteristic (ROC) curve, which
characterized the probability of being correct for a given level of confidence.

1 For interpretation of color in Figs. 1 and 2, the reader is referred to the web version of this article.
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(r = 0.94, p < 10!18). The ROC model provided a good fit to our data (for the linear regression between z(Y) and z(X), mean
R2 = 0.985 ± 0.003, mean slope = 0.809 ± 0.024).

3. Results

For both tasks (contrast discrimination and orientation discrimination), we found considerable inter-individual variability
in visual performance (contrast discrimination threshold from 7% to 15%, orientation discrimination threshold from 1.7 de-
grees to 3.4 degrees). We also found similarly large variability across participants in their metacognitive ability (AROC = 0.62–
0.80), confidence level (average confidence rating = 1.6–4.5). Thus, our tasks produced a variable range of objective perfor-
mance and metacognitive ability that were neither at ceiling nor floor.

Across participants, neither metacognitive ability nor confidence level correlated with objective performance (correlation
between metacognitive ability and visual performance, task one: r = 0.15, p = 0.55, task two: r = 0.09, p = 0.72; correlation be-
tween confidence level and visual performance, task one: r = 0.26, p = 0.30, task two: r = 0.01, p = 0.95; Fig. 2a), establishing that
the measurement of an individual’s metacognitive ability was not confounded by the stimulus parameters in the visual tasks.

When we compared individuals’ performance across the two tasks, we found no correlation in their objective visual per-
formance (r = 0.05, p = 0.83, Fig. 2c). However, metacognitive ability showed a highly significant correlation between the two
different tasks (r = 0.71, p < 0.001, Fig. 2c), as did confidence level (r = 0.70, p < 0.002, Fig. 2c). Interestingly, the mean meta-
cognitive ability across participants did not show any significant difference between the two tasks (t(17) = 1.8, p = 0.094,
Fig. 2c), whereas the average confidence level was much lower in the orientation discrimination task compared with the con-
trast discrimination task (t(17) = 4.7, p < 0.001, Fig. 2c). This indicates that the confidence level consists of a task-indepen-
dent component which reflects the general confidence one has (i.e., individuals gave high/low confidence ratings in one
task tended to gave high/low ratings in the other task), as well as a task-dependent component which reflects the confidence
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Fig. 2. Experiment results. (a) For both tasks, there existed no correlation between visual performance and metacognitive ability or mean confidence level.
(b) Metacognitive ability and confidence level were not correlated. (c) Though participants’ visual performance was not correlated across two tasks,
correlations were observed between task-specific metacognitive abilities, and between task-specific mean confidence levels. Moreover, while
metacognitive ability did not show significant difference between two tasks, mean confidence level was much lower in task two (orientation
discrimination task) than task one (contrast discrimination task).
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Meta-analysis of metacognitive sensitivity correlations
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N=181, hierarchical modelling of 
covariance in metacognitive 
efficiency across 4 distinct 2AFC 
tasks

Mazancieux, Fleming, Souchay & Moulin in prep
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Training perceptual metacognition leads to 
generalised improvements
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The confusing anatomy of confidence

• Rodents 
• OFC (Kepecs et al., 2008; Lak et al., 2014) 

• Monkeys 
• supplementary eye field (Middlebrooks & 

Sommer, 2012) 
• LIP (Kiani & Shadlen, 2009) 
• thalamic pulivinar (Komura et al., 2013) 

• Humans 
• vmPFC (De Martino, Fleming et al., 2013; 

Lebreton et al., 2015) 
• ventral striatum (Hebart et al., 2016) 
• dACC/pre-SMA (Fleck et al., 2006; Fleming et al., 

2012) 
• rostrolateral prefrontal cortex (De Martino, 

Fleming et al., 2013; Fleming et al., 2010; 2012; 
2014; Hilgenstock et al., 2014) 
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Confounding multiple computations?
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Greater certainty about motion direction = greater decision confidence 
Sensory certainty and confidence are confounded…
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Confounding multiple computations?
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inference about sensory, cognitive and motor variables (see ref. 9 for 
a review). In fact, in the particular case of heading direction, humans 
and animals have been shown to perform near optimally given the 
uncertainty inherent to the visual and vestibular information10,11. 
There is also emerging evidence about how brains implement these 
uncertainty-based computations in neural circuits9.

Uncertainty is an intrinsic part of neural computation and there are 
many varieties of it. However, probability theory, although being the 
calculus of reasoning with uncertainty data, does not provide us with 
a clear language for different uncertainty types. Consider, for instance, 
the multiple forms of uncertainty present in the above example  
(Fig. 1 ). To avoid crashing into the car in front of us, the nervous sys-
tem might infer the current heading direction, denoted by Q, based on 
the visual information received by the retina, denoted Image. Because 
of the stochastic and ambiguous nature of visual information, there 
is not a single value of Q, but an entire distribution p(Q|Image), called 
the posterior distribution over heading, that is compatible with this 
information to different degrees (see Box 1  for how these posteriors 
relate to the likelihoods in Fig. 1 ). Similarly, we can infer the cur-
rent heading based on vestibular information, leading to p(Q|Vestib).  
The width of these posterior distributions specifies the uncertainty 
associated with inferring the heading direction.

To make a decision about whether to veer left or right, we need an 
intermediate variable, let us call it z, that can take on the values left or 
right and that corresponds to an abstract state of the world—in this 
case whether it is best to head right or left of straight ahead to avoid 
the car ahead (Fig. 1 ). Inferring the likelihood of different values of z 
requires probabilistic inference to evaluate uncertainty about the state 
of the world given all sensory evidence, p(z|Image, Vestib). Note that 
Image and Vestib represent the percept of the sensory evidence, the 
internal variable available to the decision maker, and not the external 
data directly. On the basis of this posterior distribution over z, the 
brain needs to pick a choice that is effectively a function of the visual 
and vestibular information, d = choice(Image, Vestib). Assuming all 
other things are equal, the best choice corresponds to the value of z 
that is more likely in light of the evidence.

Once a choice has been made, overtly or covertly, one can com-
pute the probability that this choice is correct, p(z = k|d = k, Image, 

Vestib), that is, that z = k if choice d = k is considered (here we could 
have just as well written p   (z = k|Image, Vestib), where k is the current 
choice, hence our conditioning on d = k, which makes this point more 
explicit). This last probability distribution is defined over a variable 
that can take two values, correct (z = k and d = k) or incorrect (z = j 
and d = k, for all j w k), in reference to a particular, overt or covert, 
choice d. Thus, it represents the probability that a single hypothesis, 
Hk, will turn out to be correct based on the available evidence, p(Hk 
is correct|choice = Hk, evidence).

This stands in contrast to p(z|Image, Vestib), which is a distribu-
tion over all possible choices, irrespective of their correctness. The 
distinction between these two functions is particularly clear for deci-
sions involving more than two choices. For instance, if there are four 
choices, the variable z can take four possible values and the posterior 
over z is a function specifying four different probabilities, whereas 
the probability of being correct given a choice is still defined over two 
possible states, correct or incorrect. Thus, these two distributions are 
conceptually and mathematically distinct, which will become impor-
tant once we consider the computational role for either of them.

As just illustrated, these types of decisions involve a number of 
distinct probability distributions, leading to potential confusion in 
terminology. Not only is it unclear which of these quantities should 
be called confidence, but it is just as unclear whether the notions of 
certainty and confidence are different concepts. In fact, they are often 
used interchangeably in the literature.

Confidence: definition and computations
We propose that confidence should be used to refer to the probabil-
ity that a choice is correct, which we denote p(z = k|d = k, Image, 
Vestib). This definition has a long history in psychophysics7,12,13 and 
has been recently used in several studies14–21. This is also what many 
authors call confidence22–28, even if they don’t always formally define 
it as such. This definition not only applies to decisions, but also to 
confidence in propositions, or potentially even to aspects of self-con-
fidence. For example, suppose you are asked to express your confi-
dence in the following proposition: “Nigeria is the most populous  
African country”. This amounts to asking your confidence in choos-
ing this proposition versus “Nigeria is not the most populous African 
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Figure 1 Confidence and certainty in a visuo- 
vestibular task. As described in the main text,  
assume that we are driving in dense traffic and  
that—on the basis of visual cues, I, and vestibular  
cues about self-motion, V—we have to decide  
between veering to the left or right to avoid  
hitting a car braking in front of us. We determine  
the best course of action by inverting the  
generative model (left), which specifies how the  
choice-relevant latent variable z is assumed to  
have generated the observations I and V. In our  
case, z is either right or left, indicating the  
better direction to veer toward. This z is assumed  
to stochastically generate a heading direction  
Q relative to the braking car and compatible  
with z. The relative heading direction in turn  
generates the visual and vestibular observations.  
The generative model is inverted (right) to  
determine the probability of z = right or z = left  
given these observations, leading to the posterior distribution p(z  |I,V). This posterior  
can in turn be used to determine the choice d(I,V), which, as the posterior, is a  
function of the observations. All probability distributions leading up to this choice  
determine the certainties about various variables involved in the decision-making process. The confidence in this choice, in contrast, is the probability 
that the choice itself is correct, that is, that the latent state z indeed corresponds to this choice,  p   (z = k|d = k, I,V). For more details, see Box 1.

Pouget et al. (2016) Nat Neuro
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Construction of confidence

Confidence estimation relies on tracking an interaction 
between sensory certainty and boundary distance

Bang & Fleming (2018) PNAS
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Interaction of certainty and difficulty
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interaction contrastlinear model (GLM) of the fMRI data. As noted above, the
probability that a subject’s motion discrimination judgment is
correct is a function of both the reliability of a subject’s percept
of motion direction (coherence) and the distance between a
subject’s motion percept and a choice boundary (distance) (Fig.
2A). Thus, we would expect a brain region involved in tracking
expected performance, an aggregate signature of decision con-
fidence, to carry the main effects of coherence and distance and,
importantly, an interaction between these two factors.
To identify such activity patterns, we adopted a masking ap-

proach. At a whole-brain level, we first searched for main effects of
coherence and distance and then, applying an inclusive mask con-
structed from the intersection of the two main effects (each map
thresholded at P < 0.05, uncorrected), searched for an interaction
between coherence and distance [P < 0.05, family-wise error rate
(FWE)-corrected]. This analysis identified a single cluster in the
medial prefrontal cortex, the pgACC. In this area, activity tracked
changes in both coherence and distance and, importantly, an in-
teraction between these two factors (Fig. 3 A and B), reflecting the
pattern of both choice accuracy (Fig. 2A) and explicit confidence
estimates (Fig. 2C).
We next identified areas that selectively tracked changes in

coherence independent of distance. At a whole-brain level, we
applied an exclusive mask constructed from the intersection of the
main effect of distance and the coherence × distance interaction
(each map thresholded at P < 0.05, uncorrected) and searched for
a main effect of coherence (P < 0.05, FWE-corrected). This
analysis identified clusters in the extrastriate cortex, posterior
cingulate cortex, parietal cortex, and striatum, extending into the
thalamus; in these areas, activity was higher when coherence was
high but was unaffected by distance (Fig. 3 A and B). The
extrastriate and parietal clusters encompassed area MT+ and the
intraparietal sulcus, respectively, areas that are sensitive to motion
coherence and motion direction (19, 20).
Finally, we identified areas that selectively tracked distance in-

dependent of coherence. At a whole-brain level, we applied an
exclusive mask constructed from the intersection of the main ef-
fect of coherence and the coherence × distance interaction (each
map thresholded at P < 0.05, uncorrected) and searched for a
main effect of distance (P < 0.05, FWE-corrected). This analysis
identified clusters in the posterior cingulate cortex, with higher
activity when distance was high, and the presupplementary motor
area (pre-SMA), with higher activity when distance was low (Fig. 3
A and B). We obtained comparable whole-brain effects when in-
cluding correct trials only (SI Appendix, Fig. S5).

Controlling for Choice Reaction Time and Value. We next considered
alternative explanations of our neural results in terms of choice
reaction time and choice value. The effects of coherence, distance
and the coherence × distance interaction on pgACC activity sur-
vived the inclusion of choice reaction time, both in a regression
analysis of activity time courses (Fig. 3C) and in a series of control
GLMs (SI Appendix, Fig. S5). We also took advantage of the fact
that we varied the reward magnitude associated with the scoring
rule on trials in which an explicit confidence estimate was required,
such that a correct decision was three times more valuable in one-
half of these confidence trials. While reward magnitude modulated
activity time courses in the ventral striatum, in line with its role in
encoding reward expectation (21), we did not observe an effect of
reward magnitude in the pgACC (Fig. 3D). Taken together, these
analyses indicate that the neural activations identified by our fac-
torial design were not simply due to variation in choice reaction
time and/or choice value.

Neural Basis of Decision Confidence. Having demonstrated that the
pgACC tracks expected performance as specified by our factorial
design, we sought to establish a role for the pgACC in the con-
struction of a subjective sense of decision confidence. Normatively,
decision confidence should reflect an internal estimate of the
probability that a choice is correct and thus, if computed accurately,
should track expected performance as assayed using our factorial

design. Indeed, the above analyses show that the pgACC satisfies
such a requirement for a neural signature of decision confidence.
However, a direct correspondence between expected performance
and decision confidence should not always be expected, especially
in the absence of any feedback. At the single-trial level, subjective
confidence is an internal state that can vary even when external
variables are held constant, and at the aggregate level, subjects
might not have assigned appropriate weights to the components of
confidence formation. Thus, to establish that the pgACC is central
to a subjective sense of decision confidence, it is important to show
that the pgACC also tracks such “residual” variation in subjective
confidence over and above the expected performance.
We first sought to establish a trial-by-trial relationship between

pgACC activity and subjective confidence. We fitted an ordinal
regression model to each subject’s explicit confidence estimates in
the prescan session and used this model to generate out-of-sample
predictions about their subjective confidence in the scan session
(Fig. 4A). Supporting that the pgACC is central to a subjective sense
of decision confidence, pgACC activity estimates [Fig. 4B, linear
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Fig. 3. Neural signatures of expected performance, sensory reliability, and
boundary distance. (A) Whole-brain factorial analysis of the effects of co-
herence, distance, and the coherence × distance interaction. Activations are
masked as detailed in the text. Cluster colors denote positive (warm) and
negative (cold) effects. Clusters are significant at P < 0.05, FWE-corrected for
multiple comparisons; the cluster-defining threshold is P < 0.001, uncorrected.
Images are shown at P < 0.001, uncorrected. All clusters surviving whole-brain
correction postmasking and premasking are detailed in SI Appendix, Tables
S1 and S2. SI Appendix, Fig. S5 presents control GLMs. (B) ROI contrast estimates
from factorial analysis of the effects of coherence (C), distance (D), and the
coherence × distance interaction (C × D). (C) GLM analysis of the effects of
coherence (C), distance (D), the coherence × distance interaction (C × D), and
choice reaction time (RT) on ROI activity time courses. Vertical dashed lines in-
dicate the onset of the motion stimulus and the choice phase. SI Appendix, Fig.
S6 shows additional ROIs. (D) GLM analysis of the effect of reward magnitude
on ROI activity time courses on confidence trials. The vertical dashed line indi-
cates the onset of the reward magnitude cue. SI Appendix, Fig. S7 shows ad-
ditional ROIs. In B–D, to avoid biasing subsequent analyses, ROIs were specified
using simple contrasts from our factorial analysis (coherence, distance, and
coherence × distance) before masking, except for the ventral striatum, which
was specified anatomically. To avoid circularity, a leave-one-out cross-validation
procedure was used for ROI specification. Data are represented as group
mean ± SEM. In C and D, dots below the time course indicate significant ex-
cursions of t statistics assessed using two-tailed permutation tests.
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 424 

Figure 5.  Positive parametric modulation of the BOLD signal by an EEG-derived single-trial confidence measure 425 

(see Materials and methods), during the decision phase of the trial. Results are reported at |Z|≥2.57, and 426 

cluster-corrected using a resampling procedure (minimum cluster size 162 voxels). Bottom right: Time course 427 

of VMPFC BOLD response, showing parametric modulation by neural confidence (presented for illustration 428 

purposes only). Trials are separated by the strength of confidence-discriminating component amplitudes 429 

(𝒚CONF). VMPFC, ventromedial prefrontal cortex.  430 

Figure 5 – figure supplement 1. Positive parametric modulation of the BOLD signal by EEG-derived confidence, 431 

obtained with alternative GLM analysis (whereby the regressor parametrically modulated by behavioural 432 

confidence at the time of decision was excluded). 433 

Figure 5 – figure supplement 2. Positive parametric modulation of the BOLD signal by EEG-derived confidence 434 

at the confidence rating stage.  435 

Figure 5 – figure supplement 3. Positive parametric modulation of the BOLD signal by EEG-derived confidence 436 

measures obtained fully out of sample (following a leave-one-trial-out cross validation procedure). 437 

Figure 5 – figure supplement 4. Correlations between HRF-convolved regressors locked to stimulus (i.e., 438 

decision phase) and confidence rating prompt (i.e., rating phase). 439 

Figure 5 – figure supplement 5. Parametric modulation of the BOLD signal by confidence, following separate 440 

modelling of decision-phase and rating-phase events. 441 

 442 
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2017). Accordingly, we expected that if such regions increased their functional connectivity with the 495 

VMPFC during the decision, this would manifest as stronger negative correlation in the PPI analysis. 496 

 497 

We found that clusters in the bilateral orbitofrontal cortex (OFC; peak MNI: [16 18 -16] and [-28 28 -498 

20]), left anterior prefrontal cortex (aPFC; peak MNI: [-40 46 4]), and right dorsolateral prefrontal 499 

cortex (dlPFC; peak MNI: [48 22 30]) (Fig. 6) showed increased negative correlation with VMPFC 500 

activation during the perceptual decision. Interestingly, regions in the aPFC and dlPFC in particular 501 

have been previously linked to perceptual decision making (Noppeney et al., 2010; Liu and Pleskac, 502 

2011; Philiastides et al., 2011; Filimon et al., 2013), as well as post-decisional confidence-related 503 

processes (Fleming et al., 2012; Hilgenstock et al., 2014; Morales et al., 2018) and metacognition 504 

(Fleming et al., 2010; Rounis et al., 2010; McCurdy et al., 2013). 505 

 506 

 507 

 508 

Figure 6. Psychophysiological interaction (PPI) analysis showing functional connectivity with the ventromedial 509 

prefrontal cortex (i.e., the seed region of interest; approximate location shown in green) during the perceptual 510 

decision phase of the trial. Clusters in the anterior and dorsolateral prefrontal cortices, as well as the 511 

orbitofrontal cortex (shown in blue), show increased negative correlation with the VMPFC during the 512 

perceptual decision. All results are reported at |Z|≥2.57, and cluster-corrected using a resampling procedure 513 

(minimum cluster size 162 voxels). 514 

 515 

mPFC carries early confidence signals

mPFC tracks early decision confidence; subsequently coupled with 
lateral aPFC to support metacognitive control / communication



• Metacognition as a domain-
general resource  

• PFC as a hub for confidence 
formation 

• Altered metacognitive beliefs in 
psychopathology 

Outline



Metacognition and computational psychiatry 

• Disorders of mental health are 
subjectively - introspectively - 
distressing 

• One source of distressing beliefs may 
be metacognitive distortions - e.g. 
believing we are performing poorly 
when we are doing well; misinterpreting 
cognitive/emotional states 

• Often global, applying to the self rather 
than any one particular task/measure/
aspect of life (e.g. depression, GAD) 

• In extreme cases, deficits in 
metacognition may lead to lack of 
insight / anosagnosia

David et al. (2012) Phil Trans B
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Cognitive functioning and disturbances of mood in
UK veterans of the Persian Gulf War:

a comparative study

A. S. DAVID, " L. FARRIN, L. HULL, C. UNWIN, S. WESSELY and T. WYKES

From the Gulf War Illnesses Research Unit, Guy’s, King’s and St Thomas’ School of Medicine,
King’s College and Institute of Psychiatry, London

ABSTRACT

Background. Complaints of poor memory and concentration are common in veterans of the 1991
Persian Gulf War as are other symptoms. Despite a large research e�ort, such symptoms remain
largely unexplained.

Method. A comprehensive battery of neuropsychological tests and rating scales was administered
to 341 UK servicemen who were returnees from the Gulf War and peace keeping duties in Bosnia,
plus non-deployed military controls. All were drawn from a large randomized survey. Most were
selected on the basis of impaired physical functioning defined operationally.

Results. Group comparisons revealed an association between physical functioning and symptoms
of depression, post-traumatic stress reactions, increased anger and subjective cognitive failures.
Poorer performance on some general cognitive measures, sequencing and attention was also seen
in association with being ‘ ill ’ but virtually all di�erences disappeared after adjusting for depressed
mood or multiple comparisons. Deployment was also associated with symptoms of post-traumatic
stress and subjective cognitive failures, independently of health status, as well as minor general
cognitive and constructional impairment. The latter remained significantly poorer in the Gulf group
even after adjusting for depressed mood.

Conclusions. Disturbances of mood are more prominent than quantifiable cognitive deficits in Gulf
War veterans and probably lead to subjective underestimation of ability. Task performance deficits
can themselves be explained by depressed mood although the direction of causality cannot be
inferred confidently. Reduced constructional ability cannot be explained in this way and could
be an e�ect of Gulf-specific exposures.

INTRODUCTION

Memory and concentration di�culties and
disturbances of mood are among the most
commonly reported symptoms associated with
service in the 1990–1991 Persian Gulf War. In a
comprehensive survey of UK military personnel
who served in the Gulf War (GW), irritability
and anger was reported by 55%, while for-
getfulness and loss of concentrationwas reported
by 50% and 45%, respectively (Unwin et al.
1999). Clinical evaluation confirms these reports

" Address for correspondence: Professor A. S. David, Section of
Cognitive Neuropsychiatry, Institute of Psychiatry, De Crespigny
Park, London SE5 8AF.

(Coker et al. 1999) and surveys of US (Roy et al.
1998) and Danish servicemen (Suadicani et al.
1999) have produced similar figures.

Some studies have been published specifically
investigating the neuropsychological or cog-
nitive performance of veterans (Goldstein et al.
1996; Axelrod & Milner, 1997; Haley et al.
1997; Hom et al. 1997; Silanpaa et al. 1997;
Anger et al. 1999; Storzbach et al. 2000), but few
consistent findings have emerged. Hence while
there is a well replicated high prevalence of
cognitive and emotional disturbances in surveys
of GW veterans several years after the conflict
(The Iowa Persian Gulf Study Group, 1997;
Roy et al. 1998; Unwin et al. 1999), evidence for
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Self-reported
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questionnaires
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N = 497 participants

Metacognition and psychopathology

Experiment 1 - N=498 participants 
Experiment 2 - N=497 participants 
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In the present study, we adopt a computational psychiatry
approach, leveraging a large-scale general population sample
(N = 995) (29,30) to interrogate the relationship between de-
cision making, metacognition, and self-reported psychopa-
thology. We dissected and quantified distinct aspects of
decision formation and metacognition using sequential sam-
pling and signal detection-theoretical models (14,20,31,32) in a
perceptual decision-making task (33). Critically, a dimensional
analysis uncovered dissociable relationships between distinct
aspects of psychopathology and metacognition in the absence
of any links to decision formation. Subjects with greater
anxious-depressive symptoms exhibited lower confidence and
improved metacognition, whereas a symptom dimension
characterized by compulsive behavior and intrusive thought
(not predicted by any questionnaire score alone) was associ-
ated with overconfidence and blunted metacognition. Our
findings indicate that studying metacognitive mechanisms will
be fruitful in bridging a gap between a neuroscience of deci-
sion making and core underpinnings of psychopathology.

METHODS AND MATERIALS

Participants

Data were collected online using Amazon’s Mechanical Turk
(experiment 1: 663 participants, 18–75 years of age; experiment
2: 637 participants, 18–70 years of age). Beyond the symptom
questionnaires, no information about psychiatric diagnosis or
medication was recorded (Supplemental Figure S1). It remains
possible that at the extremes of the spectrum, certain partici-
pants would qualify for a psychiatric diagnosis and therefore

have a higher likelihood of being treated with psychotropic
medication, but our focus here is on continuous variation in
psychopathology in the general population. Participants pro-
vided consent in accordance with procedures approved by the
University College London Research Ethics Committee (Project
ID 1260/003). Subjects were paid a base sum of $4 plus a $2
bonus conditional on both above-chance task performance and
passing a check question (Supplemental Methods).

Perceptual Decision-Making Task

Participants were asked to judge which of two boxes con-
tained the higher number of dots (Figure 1A) and to report their
confidence in each judgment on a rating scale. Across both
experiments, participants performed 210 trials divided into five
blocks. In experiment 2, we added a calibration procedure to
maintain a constant level of performance both during the
experiment and across participants (19,34). Further details are
provided in the Supplement.

Self-report Psychiatric Questionnaires

After the task, subjects completed standard self-report ques-
tionnaires assessing a range of psychiatric symptoms
(Supplemental Figure S1), including depression (Zung Self-Rating
Depression Scale) (35), generalized anxiety (Generalized Anxiety
Disorder 7-item scale) (36), schizotypy (Short Scales for
Measuring Schizotypy) (37), impulsivity (Barratt Impulsiveness
Scale 11) (38), obsessive-compulsive disorder (OCD) (Obsessive-
Compulsive Inventory-Revised [OCI-R]) (39), and social anxiety
(Liebowitz Social Anxiety Scale) (40), and a short IQ evaluation
(International Cognitive Ability Resource) (41) (see Supplemental
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Figure 1. Decision-making task and behavior in experiment 1. (A) Perceptual decision-making task. Subjects were asked to judge which box contained the
higher number of dots and to provide a confidence rating in each decision. Choice and confidence responses were unspeeded. (B, C) Behavioral data and
drift-diffusion model fits. As difference in dots became greater, accuracy increased (B), and response times decreased (C). These features of the data were well
captured by the drift-diffusion model. Error bars reflect SEM. (D) Average confidence rating distributions for correct and incorrect trials. Subjects gave higher
confidence ratings for correct (green) than incorrect (red) trials. Shaded areas denote SEM; vertical lines denote the average confidence level for each response
class. (E, F) Distributions of mean choice accuracy (E) and confidence level (F) across subjects (n = 498).

Relating Symptom Dimensions to Shifts in Metacognition
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p , .05) (Figure 2). Impulsivity, OCD, and schizotypy scores
exhibited no association with confidence level (all p . .05).

In keeping with good statistical practice in large datasets,
we set out to replicate these effects in a second experiment
(n = 497), while addressing two limitations of experiment 1.
First, we observed strong correlations between individual
questionnaire scores consistent with comorbidity between
these constructs (e.g., generalized anxiety and depression
correlated at r = .75). Moreover, even within a particular
questionnaire, different items may map onto separable latent
factors, which are unobservable in traditional analyses. The set
of questionnaires in experiment 1 was not a priori designed to
enable the identification of such latent factors. To address this
issue, we included additional questionnaires allowing identifi-
cation of underlying transdiagnostic psychiatric dimensions

through application of factor analysis (29). We identified three
dissociable factors (dimensions) that cut across the nine
questionnaires from which the 209 items were drawn
(Figure 3), replicating previous findings (Supplemental
Figure S9). These factors were labeled AD, CIT, and SW (see
Supplemental Methods for further details).

Second, to more precisely isolate shifts in metacognition from
fluctuations in decision performance, we equated performance
across individuals using a continuous staircase procedure
(Supplemental Figure S4C) (19,34). Importantly, in experiment 2,
this design change allowed us to compute not only confidence
level (metacognitive bias) but also metacognitive efficiency
(meta-d0/d0). Confidence level indexes a general tendency to
respond with higher or lower confidence ratings regardless of
objective performance, whereas metacognitive efficiency quan-
tifies how well one distinguishes between correct and error trials
(10,20); both measures were empirically dissociated in the cur-
rent dataset (r = .036, p = .42).

Consistent with experiment 1, we found no association
between psychiatric symptoms and decision formation
(Supplemental Figures S5 and S7B), despite replicating sig-
nificant negative relationships with confidence level (apathy
b = 2.14, p , .01, generalized and social anxiety both
b = 2.10, p , .05 uncorrected) (Supplemental Figure S5). We
next tested for an association between subjects’ scores on the
three identified symptom dimensions and their separately
measured profiles of decision formation and metacognition
(Figure 4). When including all three factors in the same
regression model (and controlling for IQ, age, and gender),
accuracy and decision formation parameters exhibited no
relationship with psychiatric factors (Figure 4 and
Supplemental Figure S7C). However, the AD factor was
significantly associated with lower confidence level (b = 2.20,
p , .001), whereas the CIT factor was significantly associated
with higher confidence level (b = .23, p , .001) (Figure 4).
Importantly, the identified subcategories of symptoms related
to heightened confidence level were not visible in standard

0

10

20

30

40

0 50 100 150 200
Factor number

E
ig

en
va

lu
e

R
es

pe
ct

iv
e 

lo
ad

in
gs

 fo
r 

ea
ch

 fa
ct

or

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.5

0.0

0.5

−0.5

0.0

0.5

−0.5

0.0

0.5

Factor ‘Compulsive Behavior and Intrusive Thought’Factor ‘Compulsive Behavior and Intrusive Thought’

Factor ‘Social Withdrawal’Factor ‘Social Withdrawal’

Individual questionnaire items (209 items)

Factor ‘Anxious-Depression’Factor ‘Anxious-Depression’

Alcoholism
Apathy
Depression
Eating Disorders
Generalized Anxiety
Impulsivity
OCD
Schizotypy
Social Anxiety

A

B

C

Figure 3. Three latent factors (dimensions) explained the shared variance between all questionnaire items. (A) Correlation matrix of 209 questionnaire items
showing significant correlations between the answers to questionnaire items across subjects. The color scale indicates the correlation coefficient.
(B) Eigenvalues from the factor analysis revealing a three-factor solution that best accounted for our data. We labeled these factors anxious-depression,
compulsive behavior and intrusive thought, and social withdrawal, according to the strongest individual item loadings. The inset corresponds to a zoom on the
first few factors. (C) Item loadingsontoeach factor, color-codedbyquestionnaire. SeealsoSupplemental FiguresS1andS2.OCD,obsessive-compulsivedisorder.
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Figure 2. Metacognitive impairments in high compulsives. (A) Group posterior of metacognitive 
efficiency (M-ratio) for high and low compulsive participants revealed that high compulsive 
participants are significantly worse in their metacognitive abilities (B). This is not due to perceptual 
differences, because we controlled for performance, also indicated by the absence of a difference in the 
perceptual performance (d’, C). Bar plots: mean ± s.e.m; n.s. p>.10. 
 

Lower drift rate in high compulsives impairs perceptual decision making 

A previous patient study found that OCD was associated with impaired perceptual 

decision making, especially with lower drift rates24. To explore the computational mechanisms 

causing the observed perceptual decision making impairments in high compulsive participants 

and to replicate and extend the previous findings, we applied a hierarchical drift diffusion 

model38. Model comparison (Table S1) revealed that the drift rate was modulated by task 

difficulty, as reflected in stimulus motion orientation. A model with a group factor (low, high 

compulsives) that modulates drift rate and its interaction with stimulus orientation, but not 

decision threshold, performed best. 

To understand more precisely how the groups differ in their perceptual decision 

making, we evaluated the posterior model parameters of the best-fitting model. A highly 
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Metacognitive impairments 
extend perceptual decision making 
weaknesses in compulsivity
Tobias U. Hauser  1,2, Micah Allen  1,3, NSPN Consortium*, Geraint Rees  1,3 &  
Raymond J. Dolan1,2

Awareness of one’s own abilities is of paramount importance in adaptive decision making. 
Psychotherapeutic theories assume such metacognitive insight is impaired in compulsivity, though 
this is supported by scant empirical evidence. In this study, we investigate metacognitive abilities 
in compulsive participants using computational models, where these enable a segregation between 
metacognitive and perceptual decision making impairments. We examined twenty low-compulsive and 
twenty high-compulsive participants, recruited from a large population-based sample, and matched for 
other psychiatric and cognitive dimensions. Hierarchical computational modelling of the participants’ 
metacognitive abilities on a visual global motion detection paradigm revealed that high-compulsive 
participants had a reduced metacognitive ability. This impairment was accompanied by a perceptual 
decision making deficit whereby motion-related evidence was accumulated more slowly in high 
compulsive participants. Our study shows that the compulsivity spectrum is associated with a reduced 
ability to monitor one’s own performance, over and above any perceptual decision making difficulties.

Knowing what you did and how well you did it is crucial for achieving one’s goals and making adequate deci-
sions1. Humans are burdened with imperfect perception and recollection, and this extends to the metacognitive 
ability to recognize such deficits. Despite this sub-optimality, we retain an ability to quantify the degree to which 
we can rely on our behaviour as represented by the feeling of confidence.

Confidence helps us determine how much credit we should assign to an information source, enabling us to 
calibrate our future behaviour. Metacognitive ability is thus important for good performance, and it is known that 
metacognitive training improves decision making2. However, there are considerable variations in metacognitive 
performance, i.e. how well humans are able to consciously judge their own performance3–5. Poor metacognitive 
skills, or insight, can have detrimental real-world consequences. For example, one might assign too much credit 
to a poorly informed decision or exhibit too little trust in a good decision. In extremis, impaired metacognition 
might lead to systematically bad decisions, for example continuously enacting the same behaviour regardless of 
outcome, as observed in obsessive checking6.

Obsessive-compulsive disorder (OCD) is a condition linked to metacognitive impairment. This disorder 
is characterized by intrusive thoughts and images (obsessions), and these are coupled to repetitive behaviours 
(compulsions) which serve to alleviate obsession-induced distress7. Initial theories of metacognitive impairments 
in OCD propose patients overestimate the credibility of their intrusions, believing their likelihood of becom-
ing real8,9. Therapy for OCD often targets these (meta-) cognitive biases6. More recent accounts propose that 
metacognitive impairments are not restricted to intrusions, but also apply to memory recollection, although not 
unequivocally10–15. Thus, impairments in meta-memory are believed to drive repetitive checking, because low 
confidence in one’s own memory is likely to cause a repetition of a previously carried out action16,17. However, 
findings of lowered confidence in patients with OCD in cognitive domains other than memory18–20 suggest OCD 
patients might suffer from a more general impairment in metacognition.

Traditional studies of metacognition using questionnaires11,14,21–25 or subjective confidence ratings10,12,13,15  
are subject to influences that may mimic a metacognitive impairment, such as systematic response biases in 
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Summary

• We can measure metacognition across different tasks as the statistical 
association between behaviour and self-evaluation (confidence) 

• Adopting a signal detection theory framework allows simultaneous 
estimation of both first-order (d’) and metacognitive (meta-d’) sensitivity 

• Psychiatric symptom dimensions are associated with changes in 
metacognitive beliefs over and above differences in behavioural 
performance 

• These confidence estimates are encoded in (domain-general?) mPFC 
activation patterns 

• Modelling generalisation of metacognitive beliefs holds promise for 
understanding distorted self-beliefs / self-esteem 
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