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My brain can simulate your computations…

Suzuki et al. Neuron 2012 Hill et al. Nature Communications 2016

these errors. In other words, subjects with larger or smaller
neural signals in a ROI should exhibit larger or smaller behavioral
learning effects due to the error (i.e., display larger or smaller
learning rates associated with each error).

To test this hypothesis, we investigated the subjects’ group-
level correlations (Figure 3). Individual differences in the vmPFC
BOLD signals of the sRPE (measured by the estimated magni-
tude of the error’s regressor’s coefficient; called the ‘‘effect
size’’) were correlated with individual differences in the learning
rates of the sRPE (determined by the fit of the S-RLsRPE+sAPE
model to the behavioral data), while those in the dmPFC/dlPFC
BOLD signals of the sAPE were correlated with those in the
learning rates of the sAPE. First, the vmPFC activity was signifi-
cantly correlated with the learning rate of the sRPE (Figure 3A,
left; Spearman’s r = 0.360, p < 0.05), even though the explained
variance was relatively small (measured by the square of
Pearson’s correlation coefficient, r2 = 0.124). We conducted
two additional analyses to guard against potential subject
outliers that may have compounded the original correlation anal-
ysis. The correlation remained significant evenwhen removing all
outliers by a Jackknife outlier detection method (r = 0.447,
p < 0.005) or using the robust correlation coefficient (r0 = 0.346,
p < 0.05) (Supplemental Experimental Procedures). Thus, the
observed modulation of vmPFC activity lends correlative
support to our hypothesis that variations in the vmPFC signals
(putative signals of the sRPE) are associated with the behavioral
variability caused by learning using the sRPE across subjects.

Second, the dmPFC/dlPFC activity was significantly correlated
with the learning rate of the sAPE (Figure 3B, r = 0.330,
p < 0.05; r2 = 0.140; and Figure 3C, r = 0.294, p < 0.05;
r2 = 0.230). The correlations remained significant after removing
the outliers (dmPFC, r = 0.553, p < 0.0005; dlPFC, r = 0.382,
p < 0.05) or using the robust correlation coefficient (dmPFC,
r0 = 0.377, p < 0.005; dlPFC, r0 = 0.478, p < 0.01). These results
support our hypothesis that the variation in the dmPFC and
dlPFC signals (putative signals of the sAPE) is associated with
the behavioral variability caused by learning using the sAPE
across subjects.

Shared Representations of Value-Based Decision
Making for the Self and Simulated-Other
We next investigated whether the pattern of vmPFC activity
was shared between the self and simulated-other’s decision
processes in two aspects. First, the vmPFC region was the
only region modulated by the sRPE in the Other task. The
sRPE was based on simulating the other’s process in a social
setting, generated in reference to the simulated-other’s reward
probability that they estimated to substitute for the other’s
hidden variable. We were then interested in knowing whether
the same vmPFC region contained signals for the subject’s
own rewardprediction error during theControl task in a nonsocial
setting without the simulation. Second, at the time of decision in
the Other task, subjects made their choices to indicate their
predictions of the other’s choices based on the simulation,

Figure 2. Neural Activity Correlated with the Simulated-Other’s Reward and Action Prediction Errors
(A) Neural activity in the vmPFC correlated significantly with the magnitude of the sRPE at the time of outcome (Talairach coordinates: x = 0, y = 53, z = 4). The

maps in (A) and (C) are thresholded at p < 0.005, uncorrected for display.

(B) Crossvalidated, mean percent changes in the BOLD signals in the vmPFC (across subjects, n = 36; error bars = ± SEM; 7–9 s after the onset of the outcome)

during trials in which the sRPE was low, medium, or high (the 33rd, 66th, or 100th percentiles, respectively).

(C) Neural activity in the dmPFC (x = 6, y = 14, z = 52) and dlPFC (x = 45, y = 11, z = 43) correlated significantly with the magnitude of the sAPE at the time of

outcome (left: sagittal view; right: axial view).

(D) Crossvalidated, mean percent changes in the BOLD signals in the dmPFC and dlPFC (7–9 s after the onset of the outcome) during trials in which the sAPEwas

low, medium, or high.
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observed trials as compared to self-experienced trials. These
rACC firing rates were found to be significantly different between
the two trial types during the choice period, before the outcome
was revealed (P¼ 0.006o0.05/3, Bonferroni corrected t-test,
n¼ 1,440 and 2,880; Fig. 2a).

To further compare the mean response envelopes across
the three brain areas we analyzed all trials combined
(self-experienced and observed) and compared the mean firing
rate during the three time periods to a pre-choice period serving
as baseline (" 3,000 to " 1,000 ms). This analysis revealed a
significant, sharp cessation of activity in the rmPFC, shortly
before the outcome was revealed (P¼ 0.0009o0.05/9, Bonferroni
corrected t-test, n ¼ 1,620; Fig. 2b). 10,000 bootstrapped
smoothed15 mean response envelopes further emphasized the
sharp cessation of firing during the choice period in the rmPFC
and were used to measure response onset times (half-maximum)
and response amplitudes (Fig. 2c). The response onset in the
rACC (249.986 þ /" 30 ms, 95% c.i.) was significantly earlier
than in the AMY (380.325 þ /" 35 ms, P¼o10" 5o0.05/3,
Bonferroni corrected t-test, n¼ 10,000) and the rmPFC
(385.19 þ /" 85 ms, P¼ 0.0026o0.05/6, Bonferroni corrected

t-test, n¼ 10,000), while no difference in onset time was observed
between the AMY and the rmPFC (P¼ 0.540.05/6, Bonferroni
corrected t-test, n¼ 10,000). The amplitude of the responses
was higher in the rACC than in the AMY (P¼ 0.001o0.05/6,
Bonferroni corrected t-test, n¼ 10,000) but not significantly
different between the rACC and the rmPFC or between the
rmPFC and the AMY (P40.05/6, Bonferroni corrected t-test,
n¼ 10,000).

Outcome encoding. After finding specific differences in response
envelopes and onset times between the three brain areas, we
investigated the three complete neuronal populations’ general
response properties to winning versus losing. For this analysis,
we measured the absolute mean difference in each individual
neuron’s firing rate between winning and losing trials
(subtracting the mean differences before the outcome was revealed,
" 1,500–0 ms, cf. Fig. 2a right panel). In self-experienced trials
this mean response difference increased in all three brain areas
after the outcome was revealed (t¼ 0 ms, Fig. 3a). However, only
the neuronal population in the rACC also showed an increase of
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Figure 2 | Comparing response envelopes in outcome responsive neurons. (a) Peristimulus time histograms (300 ms bin width, 10 ms step size) were
calculated across selected units for self-experienced (light colours, mean þ /" s.e. of the mean, s.e.m.) and observed trials (dark colours; balanced for
high win/loss trials and low win/loss trials, respectively) and the mean firing rates in the two trial types were compared with each other in three different
time intervals: choice (magenta), early response (cyan) and late response (yellow; *Po0.05/3, t-test, nAMY¼ 1,920 and 3,840, nrmPFC¼ 540 and 1,080,
nrACC¼ 1,440 and 2,880). (b ) Combining the self-experienced and observed trials revealed a significant decrease in the rmPFC firing rate during choice and
a significant increase in all three brain areas during the early and late response periods (*Po0.05/9, t-test compared with " 3,000 to " 1,000 ms,
nAMY¼ 5,760, nrmPFC¼ 1,620, nrACC¼4,320). (c) The same data as in b smoothed and plotted with the bootstrapped 95% c.i. further emphasized the
sharp hiatus in the rmPFC neurons’ firing rate at " 370 ms (half minimum onset at "470 ms and offset at " 230 ms, left panel). The response in the
rACC was significantly earlier (half-maximum, vertical lines) than in both the AMY and the rmPFC and higher than in the AMY (peak, horizontal lines;
right panel, zoomed in on orange highlight in left panel).
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Behaviour and neural activity can be 
explained with simulated PEs
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Agent identity is decodable from low level 
learning signals
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Agent decodability predicts behavioural 
self-other distinction

Max. classification accuracy (SV – NSV)
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Getting a handle on self-other distinction
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A new hypothesis
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Behavioural evidence for self-other 
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Summary

•  Self-other distinction can be 
achieved with agent-specific 
learning signals (behaviour, MEG)

•  The degree of self-other 
distinction can be learned 
through training (behaviour)
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Supplementary: Agent decodability predicts 
subclinical personality traits
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Supplementary: Modelling beliefs
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Supplementary: Classification analysis
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Supplementary: Association between self-
other distinction and delay discounting


