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Levels of abstraction in the brain
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My brain can simulate your computations...
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Paradigm: A probabilistic false-belief task

—  Your belief
—  Your estimate of their belief
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Participants must keep track of their own beliefs AND
the other person’s beliefs (probed every 4-9 coin flips)

Ereira et al. PLoS Biol, 2018




Behaviour and neural activity can be
explained with simulated PEs
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Behaviour and neural activity can be
explained with simulated PEs
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Agent identity is decodable from low level
learning signals

Coin flip
revealed
i — Social
52 : —— Nonsocial

Classification5 1 |
accuracy (%)

A /\
‘ \\ ’g' ”~
1.‘
b ) { ‘

49 . .
-02 0 02 04 0.6
Time (seconds)
Ereira et al. PLoS Biol, 2018




Agent decodability predicts behavioural
self-other distinction
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Interim summary

Self-other distinction can be
achieved by expressing low-level
learning signals in agent-specific

neural activity patterns
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Getting a handle on self-other distinction
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A new hypothesis

The degree of self-other distinction
is learned




A new hypothesis

The degree of self-other distinction
is learned




A new hypothesis

The degree of self-other distinction
is learned




A new hypothesis

The degree of self-other distinction
is learned




Learning the distinction between self and
other

SELF OTHER SELF OTHER
I | I | | I

- Information for self
Trial .
Information for both
Frequency L
B Information for other




Learning the distinction between self and
other
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Behavioural evidence for self-other
distinction learning

Correlation
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Behavioural evidence for self-other
distinction learning

[_lLo-share
[ 1Hi-share

P K °
ot 0 o Po
[ [ e e
° o0

'i{. [ LY ..U ® e )
Signed Rank (1-tailed):
Z=3.46, p = 0.0003

-1 -0.5 0 0.5 1 1.5
Correlation coefficient
(averaged over blocks)




Summary

« Self-other distinction can be
achieved with agent-specific
learning signals (behaviour, MEG)

* The degree of self-other
distinction can be learned
through training (behaviour)
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Supplementary: Agent decodability predicts
subclinical personality traits
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Supplementary: Modelling beliefs

PES 0 if Decoy trial
)~ |Outcome, —B,_,) otherwise

0 if Privileged trial
PE® =1 outcome, — By, , ~ otherwise

B(t) = B(t—l) + a. PES(t)
Biv,, = Brb ., + @ PE° @)

® (t-1)

B(t) = B(t—l) + a. PES(t) + 6(05 - B(t—l))

B}\b = Ef\b +a.PE"(t)+ 8(05—3}\1, )

®) (t-1) (t-1)

B(t) = B(t—l) + a.PES(t) + A PEO(t)

B}\b(t) = Bf\b(t—l) + a. PEO(t) + A PES(t)

Ereira et al. PLoS Biol, 2018




Supplementary: Classification analysis
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Supplementary: Classification analysis
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Supplementary: Classification analysis
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Supplementary: Classification analysis
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Supplementary: Association between self-
other distinction and delay discounting
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