Learning the distinction between Self and Other

Sam Ereira Max Planck UCL Centre for Computational Psychiatry and Ageing Research

Actions

My brain can simulate your computations...

Suzuki et al. Neuron 2012

Hill et al. Nature Communications 2016

Paradigm: A probabilistic false-belief task

Participants must keep track of their own beliefs AND the other person's beliefs (probed every 4-9 coin flips)

Agent identity is decodable from low level learning signals

Agent decodability predicts behavioural self-other distinction

Interim summary

Self-other distinction can be achieved by expressing low-level learning signals in agent-specific neural activity patterns

Interim summary

Self-other distinction can be achieved by expressing low-level learning signals in agent-specific neural activity patterns

Interim summary

Self-other distinction can be achieved by expressing low-level learning signals in agent-specific neural activity patterns

Getting a handle on self-other distinction

Learning the distinction between self and other

Learning the distinction between self and other

Behavioural evidence for self-other distinction learning

Behavioural evidence for self-other distinction learning

Summary

- Self-other distinction can be achieved with agent-specific learning signals (behaviour, MEG)
- The degree of self-other distinction can be learned through training (behaviour)

Thank you!

Supervisors:

Ray Dolan Zeb Kurth-Nelson

Radiographers: Yoshihito Shigihara Clive Negus Megan Creasey Elisa Tebaldi

Collaborators:

Tobias Hauser Giles Story Sam Chamberlain

Other brilliant people: At the Max Planck UCL Centre At the FIL

Supplementary: Agent decodability predicts subclinical personality traits

Supplementary: Modelling beliefs

$$PE^{s}_{(t)} = \begin{cases} 0 & \text{if Decoy trial} \\ Outcome_{(t)} - B_{(t-1)} & \text{otherwise} \end{cases}$$

 $PE^{o} = \begin{cases} 0 & if \ Privileged \ trial \\ Outcome_{(t)} - B_{fb}^{-} & otherwise \end{cases}$

$$B_{(t)} = B_{(t-1)} + \alpha . PE^{s}_{(t)}$$
$$B_{\widehat{fb}_{(t)}} = B_{\widehat{fb}_{(t-1)}} + \alpha . PE^{o}_{(t)}$$

$$B_{(t)} = B_{(t-1)} + \alpha . PE^{s}_{(t)} + \delta(0.5 - B_{(t-1)})$$

$$B_{fb}_{(t)} = B_{fb}_{(t-1)} + \alpha . PE^{o}_{(t)} + \delta(0.5 - B_{fb}_{(t-1)})$$

$$B_{(t)} = B_{(t-1)} + \alpha . PE^{s}_{(t)} + \lambda . PE^{o}_{(t)}$$
$$B_{fb}_{(t)} = B_{fb}_{(t-1)} + \alpha . PE^{o}_{(t)} + \lambda . PE^{s}_{(t)}$$

Supplementary: Association between selfother distinction and delay discounting

