

Max-Planck-Institut für Bildungsforschung Max Planck Institute for Human Development

Lennart Wittkuhn Supervisor: Nico Schuck

Symposium and Advanced Course on Computational and Ageing Research 24th of September 2018 Ringberg Castle, Tegernsee, Germany

How can we study fast sequential neural events using fMRI?

Hippocampal replay: fast and sequential reactivation of hippocampal activity patterns

Can we overcome the temporal limitations of fMRI?

Recent fMRI evidence for sequential hippocampal replay in humans: Sequential replay of non-spatial task states in the human hippocampus (Schuck & Niv, 2018, *bioRxiv*)

Decoding sequential fMRI patterns of visual objects

 $ISI \in \{32, 64, 128, 512, 2048 \text{ ms}\}$

Probabilities of sequential events diverge over and within TRs

Event 4

Event 5

Cumulated and baseline-adjusted probabilities over time

Event 5

Average slope of linear fit across probabilities within each TR

Summary and outlook

- Slow sequential neural events are decoded in forward order, while fast sequences seem to be more likely decoded in backward order
- Transitions of probability patterns of decoded events from forward to backward ordering seems to be temporally more compressed with increasing sequence speed
- Decoded activation patterns of fast sequential events seem to be dominated by the last serial event
- **On-going work** includes: Improvement of fMRI preprocessing and classification accuracy, development of a sequence similarity metric

MAX PLANCK RESEARCH GROUP

NEURAL & COMPUTATIONAL BASIS OF LEARNING AND DECISION-MAKING Max–Planck–Institut für Bildungsforschung Max Planck Institute for Human Development

Which serial event position does the classifier decode?

Transitions between events are translated into step-sizes...

... which can be aggregated to forward vs. backward steps

Time-shifted HRFs reflect changes in neural response timing

Aguirre et al., 1998, Neurolmage

Miezin et al., 2000, Neurolmage

Menon et al., 1998, PNAS

Relating pattern transitions to event distances / step-sizes

Data acquisition

- 40 healthy younger adults (20 35 years)
- mean age = 24.5 years (SD = 3.6 years), 24 female
- 2 sessions with 70 minutes scanning time per subject
- 3T Siemens Magnetom TimTrio with 32-channel head coil
- TR = 1.25 s, TE = 26 ms
- 2 mm isotropic voxels, +15° tilt from AC-PC

Classifier training on a set of visual object categories

Apply classifier to fast sequences of visual objects

Analyze decoded sequence

Can we decode the true sequence?

Oddball task: Detect whether objects are presented upside down or not

cf. Haxby et al., 2001, Science

Sequence task: Detect serial position of cued target object

