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Think of it as four separate two-armed bandit tasks
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Analysing behaviour

‣ Standard approach:  
• Decide which feature of the data you care about 
• Run descriptive statistical tests, e.g. ANOVA 

‣ Many strengths 
‣ Weakness 

• Piecemeal, not holistic / global 
• Descriptive, not generative 
• No internal variables
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Models

‣ Holistic 
• Aim to model the process by which the data came about in 

its “entirety” 
‣ Generative 

• They can be run on the task to generate data as if a subject 
had done the task 

‣ Inference process 
• Capture the inference process subjects have to make to 

perform the task.  
• Do this in sufficient detail to replicate the data. 

‣ Parameters 
• replace test statistics 
• their meaning is explicit in the model 
• their contribution to the data is assessed in a holistic manner
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How to fit a model and believe the 

Model building The first step is to build a series of models. Each contains an internal process by which
different choice options are valued, and a link function which describes how preferences turn into
observed decisions. At least two models should be built: a model M0 of ’no interest’ that performs
the task, but without involving the process of interest, and a model M1 that does contain the
process of interest.

Validation on surrogate data

1. Data generation: Run each model on the experiment from which data will be examined. Do
the generated data look reasonable?

2. Surrogate model fitting: Fit each model to the data generated from it. Are the true parame-
ters readily recovered? Are some parameters not identifiable?

3. Surrogate model comparison: Does the model comparison procedure correctly identify the
data generated by each model?

Real data analysis

1. Real model fitting: Fit each model to the real data.
2. Real model validation: Run each model with the fitted parameters on the exact experimental

instance presented to that particular subject. Are the key features of the real data captured
reasonably?

3. Real model comparison: choose the least complex model that best accounts for the data.
4. Parameter examination: only at this point should the parameters of the model be examined,

and only the parameters of the most parsimonious model should be ascribed meaning.

FIGURE 3: Overview over modelling approach.

approach is to build a series of models starting from a very simple ’null’ valuation process, and then adding
in the various features of interest to examine to what extent they parsimoniously contribute towards to
explaining the data. The second component is the link function, which needs to be probabilistic to allow
noisy experimental data to be fitted. We noted above that optimal policies are always deterministic.
Making this assumption when fitting models makes them very brittle as errors due to other, unforeseen
and maybe unrecorded events are interpreted as strong evidence. Hence, one role of the link function is
to assimilate noise from a variety of sources, and inferring its parameters allows for individual variation
in this. Nevertheless, its functional form should be checked, and we will return to this below.

Validation on surrogate data serves a number of purposes. First, it is important to check that the data
the model generates is actually comparable to the data obtained in the experiment. Second, by fitting
data from the surrogate model, the ability to identify and recover parameters is established. This is an
important step prior to interpreting any parameters. Third, the ability to reliably distinguish between
different models can be established on surrogate data comparable to the one available in the experiment
under scrutiny. Indeed, it is prudent to attempt to perform these steps prior to running the experiment
in real as they may suggest changes in experimental parameters, such as the length of the tasks or the
number of subjects to run.

Finally, the models need to also be validated on the actual data under scrutiny. One possibility is to com-
pare data generated from the model (with fitted parameters) to the real data. For learning experiments,
it is for instance often useful to plot learning curves and ask whether the model captures the shape of
these curves well. Once the models have been thus validated, it is meaningful to ask which of the models
provides the most parsimonious account of the data. This is the domain of model comparison. Note that
a model comparison is always relative, and does not provide any absolute information and even the best
amongst a set of models may still be too poor to provide any meaningful information. The interpretation
of parameters in the models should only follow at the end, once one model has been chosen as a good
characterisation of the data.

Huys 2017
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Actions

‣ Q values “the process” 

‣ Probabilities “link function” 

‣ Features: 

‣ links learning process and observations  
• choices, RTs, or any other data 
• link function in GLMs 
• many other forms

Qt(at, st) = Qt�1(at, st) + ✏(rt �Qt�1(at, st))

p(at|st, ht,�) = p(at|Q(at, st),�)

=
e�Q(at,st)

P
a0 e�Q(a0,st)

p(at|st) / Q(at, st)

0  p(a)  1
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Link functions

‣ Sigmoid 

‣   - greedy 

‣ irreducible noise 

‣ critical sanity check 1: reasonable link function? 

‣ other link functions for other observations

p(a|s) = e�Q(a,s)

P
a0 e�Q(a0,s)

✏ p(a|s) =
⇢

c if a = argmaxa Q(a, s)
1�c
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p(a|s) = 1� g
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Fitting models I

‣ Maximum likelihood (ML) parameters 

‣ where the likelihood of all choices is: 

�̂ = argmax
�

L(�)

L(✓) = log p({at}Tt=1|{st}Tt=1, {rt}Tt=1, ✓|{z}
�,✏

)

= log p({at}Tt=1|{Q(st, at; ✏)}Tt=1,�)

= log
TY

t=1

p(at|Q(st, at; ✏),�)

=
TX

t=1

log p(at|Q(st, at; ✏),�)
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Fitting models II

‣ No closed form 
‣ Use your favourite method 

• gradients 
• fminunc / fmincon... 
‣ Gradients for RW model

dL(✓)
d✓

=
d

d✓

X

t

log p(at|Qt(at, st; ✏),�)

=
X

t

d

d✓
�Qt(at, st; ✏)�

X

a0

p(a0|Qt(a
0, st; ✏),�)

d

d✓
�Qt(a

0, st; ✏)

dQt(at, st; ✏)

d✏
= (1� ✏)

dQt�1(at, st; ✏)

d✏
+ (rt �Qt�1(at, st; ✏))
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Little tricks

‣ Transform your variables 

‣ Avoid over/underflow

d logL(��)
d��

� = e�
�

⇥ �⇥ = log(�)

⇥ =
1

1 + e�⇥�

⇥ ⇥⇥ = log

�
⇥

1� ⇥

⇥

y(a) = �Q(a)

ym = max
a

y(a)

p =
ey(a)P
b e

y(b)
=

ey(a)�ym

P
b e

y(b)�ym
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ML characteristics
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ML characteristics

‣ ML is asymptotically consistent, but variance 
high 
• 10-armed bandit, infer beta and epsilon
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ML characteristics

‣ ML is asymptotically consistent, but variance 
high 
• 10-armed bandit, infer beta and epsilon
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REWARD/PUNISHMENT REVERSAL LEARNING IN OLDER SUICIDE ATTEMPTERS

704       ajp.psychiatryonline.org Am J Psychiatry 167:6, June 2010

Time and Decision Making in Suicidal Behavior

Our results extend earlier findings of impaired decision 
making in younger suicide attempters with affective dis-
orders (11, 34) to a group of depressed elders with a his-
tory of suicide attempt. Suicide attempters in our study 
showed unstable decision making, which has been de-
scribed in midlife depression (15, 16) but was evident to 
a more extreme degree in our study participants. Further-
more, decreased reliance on past history was dissociated 
from abnormal sensitivity to rewards or punishments. 
Thus, in counterpoint to the prevailing view that suicidal 
individuals’ representations of reality are distorted in the 
valence domain (negative cognitive biases; see reference 
35, for example), our findings indicate distortions in the 
time domain. This notion is supported by early empirical 
findings of altered time perception (36–39) and by self-re-

Discussion

We found that in depressed elders, a deficit in probabi-
listic reversal learning, a component of decision making, 
is associated with attempted suicide but not with suicidal 
ideation. Suicide attempters discounted their reinforce-
ment history to a high degree relative to nondepressed 
comparison subjects, basing their choices largely on the 
reward or punishment received in the last trial. Some sui-
cide attempters also made multiple perseverative errors. 
This impairment was not explained by lower global cogni-
tive function, effects of lifetime substance use disorders, 
or possible brain injury from suicide attempts. Further-
more, it was dissociated from cognitive abilities engaged 
outside the context of punishment and reward—forward 
planning and working memory.

FIGURE 3. Model-Based Analyses of Probabilistic Reversal Learning: Reliance on Past Reinforcement History (Memory) and 
Learning From Punishmentsa
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a Panel A shows that suicide attempters had lower memory compared to nondepressed comparison subjects (omnibus analysis of variance, 
F=2.77, df=3, 61, p=0.049; Tukey’s honestly significant difference post hoc analysis: suicide attempters < nondepressed comparison sub-
jects, p=0.039). That is, suicide attempters relied less on their previous reinforcement history in making their decisions and more on feed-
back on the last trial compared to nondepressed comparison subjects. As expected, memory was negatively correlated with the total num-
ber of switches in participant choices (panel B) and with the number of probabilistic switches (switches following noncontingent negative 
feedback, panel C). Panel D shows that while the three depressed groups, particularly suicide ideators, tended to have a lower learning rate 
from punishments, group differences were not significant: F=2.52, df=3, 61, p=0.066; suicide ideators < nondepressed comparison subjects, 
p=0.087. This was due to perseverative errors in the three depressed groups (mean values listed in Table 2): learning rate from punishments 
was negatively correlated with the number of perseverative errors (panel E). Learning rate from punishments was positively correlated with 
the proportion of switches in response to noncontingent punishment (probabilistic switches) among all switches (panel F).
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Maximum a posteriori estimate

P(�) = p(�|a1...T ) =
p(a1...T |�)p(�)�
d�p(�|a1...T )p(�)

logP(�) =
T⇥

t=1

log p(at|�) + log p(�) + const.

logP(⇥)
d�

=
logL(⇥)

d�
+

d p(⇥)
d⇥

‣ If likelihood is strong, prior will have little effect 
• mainly has influence on poorly constrained parameters 
• if a parameter is strongly constrained to be outside the 

typical range of the prior, then it will win over the prior
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But

What prior parameters should I use? 
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Random effects

‣ See subjects as drawn from group
‣ Fixed models
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Random effects

‣ See subjects as drawn from group
‣ Fixed models

• all the same: fixed effect wrt model
• parametrically nested

• assumes within-subject mixture, rather 
than a group mixture of perfect types

• w/in subject model comparison?
• HMM 

• switch between models over trials
‣ Random effects in models

• Bayesian model averaging
• parameter interpretation?

A.

µ✓,�✓

A. A. A.

✓i ✓·✓· ✓·

Q(a, s) = !1Q1(a, s) + !2Q2(a, s)
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Estimating the hyperparameters

‣ Effectively we now want to do gradient ascent 
on: 

‣ But this contains an integral over individual 
parameters: 

‣ So we need to: �̂ = argmax
�

p(A|�)

= argmax
�

�
d ⇥p(A|⇥) p(⇥|�)

d

d�
p(A|�)

p(A|�) =
�

d⇥p(A|⇥) p(⇥|�)
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Inference

‣ analytical - rare 
‣ brute force - for simple problems 
‣ Expectation Maximisation - approximate, easy 
‣ Variational Bayes - approximate, often hard 
‣ Sampling / MCMC - slow, easy

�̂ = argmax
�

p(A|�)

= argmax
�

�
d ⇥p(A|⇥) p(⇥|�)
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Expectation Maximisation

‣ Iterate between 
• Estimating MAP parameters given prior parameters 
• Estimating prior parameters from MAP parameters

log p(A|⇣) = log

Z
d✓ p(A, ✓|⇣)

= log

Z
d✓ q(✓)

p(A, ✓|⇣)
q(✓)

�
Z

d✓ q(✓) log
p(A, ✓|⇣)

q(✓)

kth E step: q(k+1)(✓)  p(✓|A, ⇣(k))

kth M step: ⇣(k+1)  argmax
⇣

Z
d✓ q(✓) log p(A, ✓|⇣)

Jensen’s inequality
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Laplace’s approximation

‣ Problem: 

X

Y

X

lo
g(
Y)

E step: q(k+1)(✓) p(✓|A, ⇣(k))
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Laplace’s approximation

‣ Problem: 

X

Y

X

lo
g(
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Laplace’s approximation

‣ Problem: 

X

Y

X

lo
g(
Y)

Approximate as Gaussian�
dx f(x) � f�(x0)

⇥
2�⇥2

E step: q(k+1)(✓) p(✓|A, ⇣(k))
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EM with Laplace approximation

‣ E step:  
• only need sufficient statistics to perform M step 
• Approximate 
• and hence:

E step: qk(⇥) = N (mk,Sk)

mk � argmax
�

p(ak|⇥)p(⇥|�(i))

S�1
k � ⇤2p(ak|⇥)p(⇥|�(i))

⇤⇥2 �=mk

Just what we had before: MAP inference given some prior parameters

matlab: [m,L,,,S]=fminunc(…)

p(✓|A, ⇣(k)) ⇠ N (mk,Sk)

q(k+1)(✓) p(✓|A, ⇣(k))
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EM with Laplace approximation

‣ Updates 

‣ And now iterate until convergence

Prior mean = mean of MAP estimates

Prior variance depends on inverse Hessian S and 
variance of MAP estimates

M step: �(i+1)
µ =

1

K

⇤

k

mk

�(i+1)
⇥2 =

1

N

⇤

i

�
(mk)

2 + Sk

⇥
� (�(i+1)

µ )2

Take uncertainty of estimates 
into account
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Parameter recovery
Huys et al: LeAD Analysis guideline SUMMARY OF RESULTS
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FIGURE 1: Accuracy. Each panel shows the correlation between the inferred parameters (ML,
MAP0and EM-MAP) with the true parameters used for generating the data. In the top row,
the parameters were correlated with ψ, in the bottom not. This has no influence here. The
accuracy grows with number of observations per subject (T), and with the number of subjects
(colours, Nsj), except for the ML estimation. Here, the higher number of subjects means a
higher chance of outliers. The gains of using EM-MAP over the other methods is more appar-
ent in the RW model than the 2-step model, though it differs between different parameters.
The ω parameter is particularly hard to estimate.
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FIGURE 2: Correlations. Inferred parameters are often correlated because they explain partially
overlapping features of the data. The correlations are very high for ML estimates in RW (A).
In the 2-step data, the correlation between β1 and ω is weak (B). The EM-MAP procedure
includes an estimate of the prior covariance matrix (E,F). Including this in the inference
effectively results in less correlated parameter estimates (C) in the RW data, but does not
harm estimates in the two-step model.
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Correlations

Huys et al: LeAD Analysis guideline SUMMARY OF RESULTS
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FIGURE 1: Accuracy. Each panel shows the correlation between the inferred parameters (ML,
MAP0and EM-MAP) with the true parameters used for generating the data. In the top row,
the parameters were correlated with ψ, in the bottom not. This has no influence here. The
accuracy grows with number of observations per subject (T), and with the number of subjects
(colours, Nsj), except for the ML estimation. Here, the higher number of subjects means a
higher chance of outliers. The gains of using EM-MAP over the other methods is more appar-
ent in the RW model than the 2-step model, though it differs between different parameters.
The ω parameter is particularly hard to estimate.
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FIGURE 2: Correlations. Inferred parameters are often correlated because they explain partially
overlapping features of the data. The correlations are very high for ML estimates in RW (A).
In the 2-step data, the correlation between β1 and ω is weak (B). The EM-MAP procedure
includes an estimate of the prior covariance matrix (E,F). Including this in the inference
effectively results in less correlated parameter estimates (C) in the RW data, but does not
harm estimates in the two-step model.
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Are parameters ok for correlations? 

‣ Individual subject parameter estimates NO 
LONGER INDEPENDENT! 
• Change group -> change parameter estimates 
‣ compare different params 

• if different priors 
‣ correlations, t-tests 

• within same prior ok 
• more power than ML

Huys et al: LeAD Analysis guideline SUMMARY OF RESULTS
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FIGURE 3: p value distributions for correlation with psychometric variable ψ. From top to bot-
tom: distribution of p values for true parameters used for generating data; ML estimates;
EM-MAP estimates and MAP0estimates. For a true null, the distributions of p values are flat.
Hence all estimates can be used for regression analyses or t-tests.
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FIGURE 4: Error rates. A-D shows the correlation between log p values of correlations between ψ
and true parameters and ψ and estimated parameters. A-B show results for RW model when
there is no (A) and there is a correlation in the true parameters, and C and D show the same
for the 2-step model. The correlations between p values are small for the 2-step datasets. E,F
show the false negative rates when there is a true correlation. The false negative rates are
particularly high for small 2-step datasets.
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GLM



Model fitting Quentin Huys, UCLRingberg 26/9/2018

GLM

‣ So far  
• infer individual parameters 
• apply standard tests



Model fitting Quentin Huys, UCLRingberg 26/9/2018

GLM

‣ So far  
• infer individual parameters 
• apply standard tests
‣ Alternative 

• View as variation across group 
• Specific - more powerful?
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GLM

‣ So far  
• infer individual parameters 
• apply standard tests
‣ Alternative 

• View as variation across group 
• Specific - more powerful?
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GLM

‣ So far  
• infer individual parameters 
• apply standard tests
‣ Alternative 

• View as variation across group 
• Specific - more powerful?

A.

µ✓,�✓

A. A. A.

✓i ✓·✓· ✓·µi
✓ = µGroup

✓ + � i

Infer
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GLM

‣ Group-level regressor
Huys et al: LeAD Analysis guideline SUMMARY OF RESULTS
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FIGURE 5: GLM performance. A-D show the estimates of the regression coefficients when there
was no true correlation (A,C) and when there was a correlation of size 1 (B,D) in the RW
(A,B) and the 2-step models (C,D). Error bars are derived from the finite difference Hessians
around the estimates. E,F show the p value distribution obtained from the Hessians around
the regression coefficients for the case were the true parameters and ψ were uncorrelated.
For the RW model (E), this correctly yields a flat distribution. This is not the case for the ω
parameter of the 2-step model (F).

One drawback of using the parameter estimates as summary statistics and performing standard statistical
tests on them is that the certainty with which these parameter estimates were inferred is lost. Some sub-
jects might have performed poorly and their estimates should hence influence a regression less than those
of others. This can be taken into account in a GLM formulation, where we directly estimate regression
coefficients at the group level. The code provides error bars both for the group means and also for the
regression coefficients based on finite difference estimates of the Hessians.

Figure 5A-D shows that the regression coefficients could be estimated reasonably well both in the case
where there was and where there was no correlation present. We next asked whether the Hessians did
indeed provide a correct estimate of uncertainty. For the RW model this appears to be true: here, using
them to estimate t and hence p values yields a flat distribution of p values when there is no effect (Fig-
ure 5E). However, this is not true for the ω parameter of the 2-step model (Figure 5F). Hence, we cannot
generally use (at least this version of) the estimated errors around the GLM regression coefficients to
decide whether a correlation was significant or not.

An alternative is to perform model comparison, comparing a model without regressor (containing just the
group means for each parameter) to a model including the GLM regressor. This is probably the most ap-
propriate Bayesian approach. Estimating Bayes Factors is, however, difficult, and we hence examine how
an approximation to this, the integrated BIC (iBIC) performs. The lower this is, the more parsimonious
and hence “better” the model. For the RW data, model comparison using iBIC yields low false positive
rates (Figure 6A), but very high false negative rates (Figure 6B). For the 2-step model, false positive and
false negative rates appear to both be unacceptably high (Figure 6C,D).

Finally, the EM-MAP algorithm does provide approximate uncertainties for each individual parameter
estimate. These uncertainties can be used as weights in a regression analysis to attempt to achieve some-
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GLM

‣ Group-level regressor
Huys et al: LeAD Analysis guideline SUMMARY OF RESULTS
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FIGURE 5: GLM performance. A-D show the estimates of the regression coefficients when there
was no true correlation (A,C) and when there was a correlation of size 1 (B,D) in the RW
(A,B) and the 2-step models (C,D). Error bars are derived from the finite difference Hessians
around the estimates. E,F show the p value distribution obtained from the Hessians around
the regression coefficients for the case were the true parameters and ψ were uncorrelated.
For the RW model (E), this correctly yields a flat distribution. This is not the case for the ω
parameter of the 2-step model (F).

One drawback of using the parameter estimates as summary statistics and performing standard statistical
tests on them is that the certainty with which these parameter estimates were inferred is lost. Some sub-
jects might have performed poorly and their estimates should hence influence a regression less than those
of others. This can be taken into account in a GLM formulation, where we directly estimate regression
coefficients at the group level. The code provides error bars both for the group means and also for the
regression coefficients based on finite difference estimates of the Hessians.

Figure 5A-D shows that the regression coefficients could be estimated reasonably well both in the case
where there was and where there was no correlation present. We next asked whether the Hessians did
indeed provide a correct estimate of uncertainty. For the RW model this appears to be true: here, using
them to estimate t and hence p values yields a flat distribution of p values when there is no effect (Fig-
ure 5E). However, this is not true for the ω parameter of the 2-step model (Figure 5F). Hence, we cannot
generally use (at least this version of) the estimated errors around the GLM regression coefficients to
decide whether a correlation was significant or not.

An alternative is to perform model comparison, comparing a model without regressor (containing just the
group means for each parameter) to a model including the GLM regressor. This is probably the most ap-
propriate Bayesian approach. Estimating Bayes Factors is, however, difficult, and we hence examine how
an approximation to this, the integrated BIC (iBIC) performs. The lower this is, the more parsimonious
and hence “better” the model. For the RW data, model comparison using iBIC yields low false positive
rates (Figure 6A), but very high false negative rates (Figure 6B). For the 2-step model, false positive and
false negative rates appear to both be unacceptably high (Figure 6C,D).

Finally, the EM-MAP algorithm does provide approximate uncertainties for each individual parameter
estimate. These uncertainties can be used as weights in a regression analysis to attempt to achieve some-
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Group error bars

‣ EM standardly does not provide error bars 
‣ Shifted samples 

‣ Oakes 1999 
• analytical description of gradients 
• tricky, but combined with forward differentiation it is 

automatic (julialang.org Pkg ForwardDiff)

p(A|⇣) ⇡
X

i

p(A|✓i); ✓i ⇠ p(✓|⇣) (1)

@

@µ
p(A|⇣) ⇡ 1
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"
X

i

p(A|✓i + �)�
X

i

p(A|✓i)
#
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http://julialang.org
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GLM error bars
Huys et al: LeAD Analysis guideline SUMMARY OF RESULTS
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FIGURE 5: GLM performance. A-D show the estimates of the regression coefficients when there
was no true correlation (A,C) and when there was a correlation of size 1 (B,D) in the RW
(A,B) and the 2-step models (C,D). Error bars are derived from the finite difference Hessians
around the estimates. E,F show the p value distribution obtained from the Hessians around
the regression coefficients for the case were the true parameters and ψ were uncorrelated.
For the RW model (E), this correctly yields a flat distribution. This is not the case for the ω
parameter of the 2-step model (F).

One drawback of using the parameter estimates as summary statistics and performing standard statistical
tests on them is that the certainty with which these parameter estimates were inferred is lost. Some sub-
jects might have performed poorly and their estimates should hence influence a regression less than those
of others. This can be taken into account in a GLM formulation, where we directly estimate regression
coefficients at the group level. The code provides error bars both for the group means and also for the
regression coefficients based on finite difference estimates of the Hessians.

Figure 5A-D shows that the regression coefficients could be estimated reasonably well both in the case
where there was and where there was no correlation present. We next asked whether the Hessians did
indeed provide a correct estimate of uncertainty. For the RW model this appears to be true: here, using
them to estimate t and hence p values yields a flat distribution of p values when there is no effect (Fig-
ure 5E). However, this is not true for the ω parameter of the 2-step model (Figure 5F). Hence, we cannot
generally use (at least this version of) the estimated errors around the GLM regression coefficients to
decide whether a correlation was significant or not.

An alternative is to perform model comparison, comparing a model without regressor (containing just the
group means for each parameter) to a model including the GLM regressor. This is probably the most ap-
propriate Bayesian approach. Estimating Bayes Factors is, however, difficult, and we hence examine how
an approximation to this, the integrated BIC (iBIC) performs. The lower this is, the more parsimonious
and hence “better” the model. For the RW data, model comparison using iBIC yields low false positive
rates (Figure 6A), but very high false negative rates (Figure 6B). For the 2-step model, false positive and
false negative rates appear to both be unacceptably high (Figure 6C,D).

Finally, the EM-MAP algorithm does provide approximate uncertainties for each individual parameter
estimate. These uncertainties can be used as weights in a regression analysis to attempt to achieve some-
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GLM error bars
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FIGURE 5: GLM performance. A-D show the estimates of the regression coefficients when there
was no true correlation (A,C) and when there was a correlation of size 1 (B,D) in the RW
(A,B) and the 2-step models (C,D). Error bars are derived from the finite difference Hessians
around the estimates. E,F show the p value distribution obtained from the Hessians around
the regression coefficients for the case were the true parameters and ψ were uncorrelated.
For the RW model (E), this correctly yields a flat distribution. This is not the case for the ω
parameter of the 2-step model (F).

One drawback of using the parameter estimates as summary statistics and performing standard statistical
tests on them is that the certainty with which these parameter estimates were inferred is lost. Some sub-
jects might have performed poorly and their estimates should hence influence a regression less than those
of others. This can be taken into account in a GLM formulation, where we directly estimate regression
coefficients at the group level. The code provides error bars both for the group means and also for the
regression coefficients based on finite difference estimates of the Hessians.

Figure 5A-D shows that the regression coefficients could be estimated reasonably well both in the case
where there was and where there was no correlation present. We next asked whether the Hessians did
indeed provide a correct estimate of uncertainty. For the RW model this appears to be true: here, using
them to estimate t and hence p values yields a flat distribution of p values when there is no effect (Fig-
ure 5E). However, this is not true for the ω parameter of the 2-step model (Figure 5F). Hence, we cannot
generally use (at least this version of) the estimated errors around the GLM regression coefficients to
decide whether a correlation was significant or not.

An alternative is to perform model comparison, comparing a model without regressor (containing just the
group means for each parameter) to a model including the GLM regressor. This is probably the most ap-
propriate Bayesian approach. Estimating Bayes Factors is, however, difficult, and we hence examine how
an approximation to this, the integrated BIC (iBIC) performs. The lower this is, the more parsimonious
and hence “better” the model. For the RW data, model comparison using iBIC yields low false positive
rates (Figure 6A), but very high false negative rates (Figure 6B). For the 2-step model, false positive and
false negative rates appear to both be unacceptably high (Figure 6C,D).

Finally, the EM-MAP algorithm does provide approximate uncertainties for each individual parameter
estimate. These uncertainties can be used as weights in a regression analysis to attempt to achieve some-
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FIGURE 5: GLM performance. A-D show the estimates of the regression coefficients when there
was no true correlation (A,C) and when there was a correlation of size 1 (B,D) in the RW
(A,B) and the 2-step models (C,D). Error bars are derived from the finite difference Hessians
around the estimates. E,F show the p value distribution obtained from the Hessians around
the regression coefficients for the case were the true parameters and ψ were uncorrelated.
For the RW model (E), this correctly yields a flat distribution. This is not the case for the ω
parameter of the 2-step model (F).

One drawback of using the parameter estimates as summary statistics and performing standard statistical
tests on them is that the certainty with which these parameter estimates were inferred is lost. Some sub-
jects might have performed poorly and their estimates should hence influence a regression less than those
of others. This can be taken into account in a GLM formulation, where we directly estimate regression
coefficients at the group level. The code provides error bars both for the group means and also for the
regression coefficients based on finite difference estimates of the Hessians.

Figure 5A-D shows that the regression coefficients could be estimated reasonably well both in the case
where there was and where there was no correlation present. We next asked whether the Hessians did
indeed provide a correct estimate of uncertainty. For the RW model this appears to be true: here, using
them to estimate t and hence p values yields a flat distribution of p values when there is no effect (Fig-
ure 5E). However, this is not true for the ω parameter of the 2-step model (Figure 5F). Hence, we cannot
generally use (at least this version of) the estimated errors around the GLM regression coefficients to
decide whether a correlation was significant or not.

An alternative is to perform model comparison, comparing a model without regressor (containing just the
group means for each parameter) to a model including the GLM regressor. This is probably the most ap-
propriate Bayesian approach. Estimating Bayes Factors is, however, difficult, and we hence examine how
an approximation to this, the integrated BIC (iBIC) performs. The lower this is, the more parsimonious
and hence “better” the model. For the RW data, model comparison using iBIC yields low false positive
rates (Figure 6A), but very high false negative rates (Figure 6B). For the 2-step model, false positive and
false negative rates appear to both be unacceptably high (Figure 6C,D).

Finally, the EM-MAP algorithm does provide approximate uncertainties for each individual parameter
estimate. These uncertainties can be used as weights in a regression analysis to attempt to achieve some-
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Hierarchical / random effects models

‣ Advantages 
• Accurate group-level mean and variance 
• Outliers due to weak likelihood are regularised 
• Strong outliers are not 
• Useful for model selection 

‣ Disadvantages 
• Individual estimates    depend on other data, i.e. on         and 

therefore need to be careful in interpreting these as summary 
statistics 

• More involved; less transparent 
‣ Psychiatry 

• Groups often not well defined, covariates better 
‣ fMRI 

• Shrink variance of ML estimates - fixed effects better still?

✓i Aj 6=i
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How does it do? 
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Overfitting

X

Y
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Model comparison

‣ A fit by itself is not meaningful 
‣ Generative test 

• qualitative 
‣ Comparisons 

• vs random  
• vs other model -> test specific hypotheses and isolate 

particular effects in a generative setting
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Model comparison 

‣ Averaged over its parameter settings, how well 
does the model fit the data? 

‣ Model comparison: Bayes factors 

‣ Problem:  
• integral rarely solvable  
• approximation: Laplace, sampling, variational...

p(A|M) =

Z
d✓ p(A|✓) p(✓|M)

BF =
p(A|M1)

p(A|M2)
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Why integrals? The God Almighty test
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Why integrals? The God Almighty test
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N
(p(X|�1) + p(X|�2) + · · · )

These two factors fight it out
Model complexity vs model fit
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Group-level BIC

‣ Very simple 
• 1) EM to estimate group prior mean & variance 

• simply done using fminunc, which provides Hessians 
• 2) Sample from estimated priors 
• 3) Average

log p(A|M) =

�
d� p(A|�) p(�|M)

⇥ �1

2
BICint

= log p̂(A|�̂ML)� 1

2
|M| log(|A|)
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How does it do? 
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too nice?
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Group Model selection

Integrate out your parameters
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Model comparison: overfitting?
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Model comparison: overfitting?
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Posterior distribution on models

‣ Generative model for models

density on model space itself, using a Bayesian approach as described
in the next section.

Bayesian inference on model space
Previously, we have suggested the use of a group Bayes factor (GBF)

that is simply the product of Bayes factors over N subjects (Stephan et
al., 2007b). This is equivalent to a fixed effects analysis that rests on
multiplying the marginal likelihoods over subjects to furnish the
probability of the multi-subject data, conditioned on each model:

GBFi; j =
YN

n=1
BF nð Þ

i; j : ð2Þ

Here, the subscripts i,j refer to the models being compared, and
the bracketed superscript refers to the n-th subject. The reason one
can simply multiply the probabilities (or add the log-evidences) is
that the measured data can be regarded as conditionally independent
samples over subjects. However, this does not represent a formal
evaluation of the conditional density of a particular model given data
from all subjects. Furthermore, it rests upon a very particular
generative model for group data: first, select one of K models from
a multinomial distribution and then generate data, under this model,
for each of the N subjects. This is fundamentally different from a
generative model which treats subjects as random effects: here we
would select a model for each subject by sampling from a
multinomial distribution, and then generate data under that
subject-specific model. The distinction between these two generative
models is illustrated graphically in Fig. 1.

In short, the GBF encodes the relative probability that the data
were generated by one model relative to another, assuming the data
were generated by the same model for all subjects. What we often
want, however, is the density from which models are sampled to
generate subject-specific data. In other words, we seek the conditional
estimates of the multinomial parameters, i.e. the model probabilities
r=[r1,…,rK], that generate switches or indicator variables, mn=
[mn1,…,mnK], where mnk∈{0,1} for any given subject n∈ {1,…,N}, and
only one of these switches is equal to one; i.e., PK

k=1
mnk = 1. These

indicator variables prescribe the model for the n-th subject; where p
(mnk=1)=rk. In the following, we describe a hierarchical Bayesian
model that can be inverted to obtain an estimate of the posterior
density over r.

A variational Bayesian approach for inferring model probabilities

Wewill deal with Kmodels with probabilities r=[r1,…,rK] that are
described by a Dirichlet distribution:

p r jαð Þ = Dir r;αð Þ = 1
Z αð Þ

Y

k

rαk − 1
k

Z αð Þ =
Q

k Γ αkð Þ
Γð
P

k
αkÞ

: ð3Þ

Here, α=[α1,…,αK] are related to the unobserved “occurrences” of
models in the population; i.e. αk−1 can be thought of as the effective
number of subjects in which model k generated the observed data.
Given the probabilities r, the distribution of themultinomial variablemn

describes the probability that model k generated the data of subject n:

p mn jrð Þ =
Y

k

rmnk
k : ð4Þ

For any given subject n, we can sample from this multinomial
distribution to obtain a particular model k. The marginal likelihood of
the data in the n-th subject, given this model k, is then obtained by
integrating over the parameters of the model selected:

p yn jmnkð Þ =
R
p y jϑð Þp ϑ jmnkð Þdϑ: ð5Þ

The graphical model summarising the dependencies among r, m
and y as described by Eqs. (3)–(5) is shown in Figs. 1B and C. Our goal
is to invert this hierarchical model and estimate the posterior
distribution over r.

Given the structure of the hierarchical model in Fig. 1, the joint
probability of the parameters and the data y can be written as:

p y;r;mð Þ = p y jmð Þp m jrð Þp r jα0ð Þ

= p r jα0ð Þ
Y

n
p yn jmnð Þp mn jrð Þ

" #

=
1

Z α0ð Þ
Y

k

rα0k − 1
k

" #
Y

n
p yn jmnð Þ

Y

k

rmnk
k

" #

=
1

Z α0ð Þ
Y

n

Y

k

p yn jmnkð Þrk½ $mnk rα0k − 1
k

" #
: ð6Þ

Fig. 1. Bayesian dependency graphs for fixed effects (A) and random effects generative models for multi-subject data (B, C). The graphical model in panels B and C are equivalent; we
show both because 1B is more intuitive for readers unfamiliar with graphical models whereas 1C uses a more compact notation where rectangles denote deterministic parameters
and shaded circles represent observed values. α=parameters of the Dirichlet distribution (number of model “occurrences”); r=parameters of the multinomial distribution
(probabilities of the models); m=model labels; y=observed data; k=model index; K=number of models; n=subject index; N=number of subjects.

1006 K.E. Stephan et al. / NeuroImage 46 (2009) 1004–1017

Stephan et al. 2009
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Bayesian model selection - equations

‣ Write down joint distribution of generative model 
‣ Variational approximations lead to set of very 

simple update equations 
• start with flat prior over model probabilities 

• then update

The log joint probability is therefore given by:

lnp y;r;mð Þ = − ln Z α0ð Þ +
X

n

X

k

ð α0k − 1ð Þ ln rk

+ mnk ln p yn jmnkð Þ + ln rkð ÞÞ: ð7Þ

The inversion of our hierarchical model relies on the following
variational Bayesian (VB) approach in which we assume that an
approximate posterior density q can be described by the following
mean-field factorisation:

q r;mð Þ = q rð Þq mð Þ

q rð Þ~ exp I rð Þð Þ

q mð Þ~ exp I mð Þð Þ

I rð Þ = hln p y;r;mð Þiq mð Þ

I mð Þ = hln p y;r;mð Þiq rð Þ: ð8Þ

Here, I(r) and I(r) are variational energies for the mean-field
partition. Note that throughout the paper we use "log" and "ln"
interchangeably to refer to the natural logarithm. The mean-field
assumption in Eq. (8) means that the VB posterior will only be
approximate but, as we shall see, it provides a particularly simple and
intuitive algorithm (c.f. Eq. (14)). This algorithm provides precise
estimates of the parameters α defining the approximate Dirichlet
posterior q(r)≈p(r|y); this was verified by comparisons with a
sampling method which is described in Appendix B.

To obtain the approximate posterior q(m)≈p(m|y), we have to
do two things: first, compute I(m) and second, determine the
normalizing constant or partition function for exp(I(m)), which
renders q(m) a probability density. Making use of the log joint
probability in Eq. (7) and omitting terms that do not depend on m,
the variational energy is:

I mð Þ =
R
q rð Þ lnp y;r;mð Þdr

=
X

n

X

k

mnk lnp yn jmnkð Þ +
R
q rkð Þ ln rkdrk

! "

=
X

n

X

k

mnk lnp yn jmnkð Þ + W αkð Þ− W αSð Þð Þ: ð9Þ

Here, αS =
P
k
αk and Ψ is the digamma function.2

W αkð Þ = B ln C αkð Þ
Bαk

: ð10Þ

The next step is to obtain the approximate posterior, q(m): If gnk is
our (normalized) posterior belief that model k generated the data
from subject n, i.e. gnk=q(mnk=1), then Eq. (9) tells us that:

gnk =
unk

un

unk = exp lnp yn jmnkð Þ + W αkð Þ− W αSð Þð Þ

un =
X

k

unk ð11Þ

where unk is the equivalent (non-normalized) belief and un is the
partition function for exp(I(m)) that ensures that the posterior
probabilities sum to one.

We now repeat the above procedure but this time for the
approximate posterior over r. By substituting in the log joint
probability from Eq. (7) and omitting terms that do not depend on
r, we have:

I rð Þ =
R
q mð Þ ln p y; r;mð Þdm

=
X

k

α0k − 1ð Þ ln rk +
X

n
gnk ln rk

" #

=
X

k

α0k + βk − 1ð Þ ln rk: ð12Þ

Here, βk=Σgnk is the expected number of subjects whose data we
believewere generated bymodel k. Now, fromEq. (8)we have ln q(r)=
I(r)+… and from Eq. (3) we see that the log of a Dirichlet density is
given by lnDir r;að Þ =

P
k

αk − 1ð Þ ln rk + N . Hence, by comparing

terms we see that the approximate posterior q(r)=Dir(r; α) where:

α = α0 + β: ð13Þ

In short, Eq. (13) simply adds the ‘data counts’, β, to the ‘prior
counts’, α0. This is an example of a free-form VB approximation,
where the optimal form of the approximate posterior (in this case
a Dirichlet), has been derived rather than assumed before-hand
(c.f. fixed-form VB approximations; Friston et al., 2007). It should be
stressed, however, that due to the mean-field assumption used by our
VB approach (see Eq. (8)), q(r) is only an approximate posterior and
the true posterior distribution p(r|y) does not necessarily have the
exact form of a Dirichlet distribution.

The above equations can be implemented as an optimisation
algorithmwhich updates estimates of α iteratively until convergence.
By combining Eqs. (11), (12) and (13) we get the following pseudo-
code of a simple algorithm that gives us the parameters of the
conditional density we seek, i.e. q(r)=Dir(r; α):

α = α0:

Until convergence:

unk = exp lnp yn jmnkð Þ + W αkð Þ− W
X

k

αk

 ! !

βk =
X

n

unkP
k unk

α = α0 + β ð14Þ

end.

We make the usual assumption that, a priori; no models have been
“seen” (i.e. the Dirichlet prior is α0=[1,…,1]).3 Critically, this scheme
requires only the log-evidences over models and subjects (c.f.
Eq. (11)).

Using the Dirichlet density p(r|y; α) for model comparison

After the above optimisation of the Dirichlet parameters, α, the
Dirichlet density p(r|y; α) can be used for model comparisons at the
group level. There are several ways to report this comparison that

2 See Appendix B in Bishop (2006) concerning the use of the digamma function in
Eq. 10.

3 Note that this choice of Dirichlet prior is a “flat” prior, assigning uniform
probabilities to all models. In contrast, a Dirichlet prior with elements below unity
results in a highly concave probability density that concentrates the probability mass
around zero and one, respectively.

1007K.E. Stephan et al. / NeuroImage 46 (2009) 1004–1017
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emfit

‣ www.quentinhuys.com/pub/emfit 
‣ six model classes 

• basic RW - to learn 
• Affective Go/Nogo (Guitart et al., 2012) 
• Probabilistic Reward (Pizzagalli et al., 2005) 
• Twostep (Daw et al., 2011) 
• Effort (Gold et al., 2013) 
• Pruning (Huys et al., 2012) 

‣ ML, MAP and EM-MAP 
‣ GLM (no implicit differentiation, so only for small models!) 
‣ many models for each task - standardly fit all 
‣ model comparison 
‣ data generation and plotting of standard sanity checks

http://www.quentinhuys.com/pub/emfit
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emfit 

‣ Run example  
• generate sample dataset 
• fit all models 
• do model comparison, output as figure & latex file 
• plot sanity / generative checks 
• batchRunEMfit(‘mTASKNAME’) 
‣ Fit dataset 

• check data format in mTASKNAME/dataformat.txt or 
look at example dataset generated above in fitResults/
Data.mat 

• batchRunEMfit(‘mTASKNAME’,Data.mat)
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How to fit a model and believe the results

Model building The first step is to build a series of models. Each contains an internal process by which
different choice options are valued, and a link function which describes how preferences turn into
observed decisions. At least two models should be built: a model M0 of ’no interest’ that performs
the task, but without involving the process of interest, and a model M1 that does contain the
process of interest.

Validation on surrogate data

1. Data generation: Run each model on the experiment from which data will be examined. Do
the generated data look reasonable?

2. Surrogate model fitting: Fit each model to the data generated from it. Are the true parame-
ters readily recovered? Are some parameters not identifiable?

3. Surrogate model comparison: Does the model comparison procedure correctly identify the
data generated by each model?

Real data analysis

1. Real model fitting: Fit each model to the real data.
2. Real model validation: Run each model with the fitted parameters on the exact experimental

instance presented to that particular subject. Are the key features of the real data captured
reasonably?

3. Real model comparison: choose the least complex model that best accounts for the data.
4. Parameter examination: only at this point should the parameters of the model be examined,

and only the parameters of the most parsimonious model should be ascribed meaning.

FIGURE 3: Overview over modelling approach.

approach is to build a series of models starting from a very simple ’null’ valuation process, and then adding
in the various features of interest to examine to what extent they parsimoniously contribute towards to
explaining the data. The second component is the link function, which needs to be probabilistic to allow
noisy experimental data to be fitted. We noted above that optimal policies are always deterministic.
Making this assumption when fitting models makes them very brittle as errors due to other, unforeseen
and maybe unrecorded events are interpreted as strong evidence. Hence, one role of the link function is
to assimilate noise from a variety of sources, and inferring its parameters allows for individual variation
in this. Nevertheless, its functional form should be checked, and we will return to this below.

Validation on surrogate data serves a number of purposes. First, it is important to check that the data
the model generates is actually comparable to the data obtained in the experiment. Second, by fitting
data from the surrogate model, the ability to identify and recover parameters is established. This is an
important step prior to interpreting any parameters. Third, the ability to reliably distinguish between
different models can be established on surrogate data comparable to the one available in the experiment
under scrutiny. Indeed, it is prudent to attempt to perform these steps prior to running the experiment
in real as they may suggest changes in experimental parameters, such as the length of the tasks or the
number of subjects to run.

Finally, the models need to also be validated on the actual data under scrutiny. One possibility is to com-
pare data generated from the model (with fitted parameters) to the real data. For learning experiments,
it is for instance often useful to plot learning curves and ask whether the model captures the shape of
these curves well. Once the models have been thus validated, it is meaningful to ask which of the models
provides the most parsimonious account of the data. This is the domain of model comparison. Note that
a model comparison is always relative, and does not provide any absolute information and even the best
amongst a set of models may still be too poor to provide any meaningful information. The interpretation
of parameters in the models should only follow at the end, once one model has been chosen as a good
characterisation of the data.

Huys 2017
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Behavioural data modelling

‣ Are no panacea 
• statistics about specific aspects of decision machinery 
• only account for part of the variance 

‣ Model needs to match experiment 
• ensure subjects actually do the task the way you wrote 

it in the model 
• model comparison 

‣ Model = Quantitative hypothesis 
• strong test 
• need to compare models, not parameters 
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Thanks

‣ Nathaniel Daw 
‣ Peter Dayan 
‣ Daniel Schad 

‣ SNF 
‣ DFG


