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Synapses are computational devices that not only transmit action 
potential-encoded information, but also transform it. Neuronal 
information is often encoded by bursts or trains of action potentials. 
Synapses process such action potential bursts or trains in a synapse-
specific manner that involves use-dependent changes in 
neurotransmitter release during the burst or train (referred to as 
short-term plasticity). In addition, synapses experience use-
dependent long-term changes in synaptic transmission that adjust 
the “gain” of a synapse, and operate either pre- and/or 
postsynaptically (referred to as long-term plasticity)
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COMPUTATION: BETWEEN CIRCUITS AND BEHAVIOUR
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AUTOASSOCIATIVE MEMORY: AN EXAMPLE
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I raised to my lips a spoonful of the tea in which I had 
soaked a morsel of the cake. ... And suddenly the 
memory returns. The taste was that of the little 
crumb of madeleine which on Sunday mornings at 
Combray, when I went to say good day to her in her 
bedroom, my aunt Léonie used to give me, dipping it 
first in her own cup of real or of lime-flower tea.

Marcel Proust: À la recherche du temps perdu
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Huxter et al, 1993

spike times convey
spatial information

is it possible for them to dissociate? Harris et al.5 reported an overall
relationship between phase and rate in spikes recorded on a linear
track, and our data show a similar relationship (Fig. 1g; Supplemen-
tary Fig. 1a, b). However, it is much weaker than the relationship
between phase and position (Fig. 1d; phase correlates better with
position than rate in 66/77 cells, P ¼ 5.3 £ 10211), and may result
directly from the relationship that both phase and rate hold with
position (Supplementary Fig. 1c). Mehta and colleagues6 reported
that, over the first few runs of a session, the firing fields became
more negatively skewed versus position and the phase precession
strengthened—suggesting that both rate and phase reflect the net
input to the cell and that this input becomes ramp-shaped,
increasing with distance through the field. Our fields show a
continuous range of negative, zero and positive skew, but there
was no correlation between skew and the rate or amount of phase
precession (Supplementary Fig. 2). Thus a causal relationship
between negative field skew and phase precession is unlikely, despite
both effects strengthening over the first few runs of a session.

To see whether phase and rate dissociate within a place field, each
field was divided into three equal segments: the beginning, middle
and end. The mean IFR and mean firing phase per theta cycle, and
their respective temporal derivatives (TDIFR and TDphase) for runs
through each segment of the field were averaged across the popu-
lation (Fig. 2). The mean phase per cycle continues to precess
throughout the entire run, despite the firing rate rising in the early
part of the field and then falling, and despite the increasing variance
of firing phase through the field6,14. TDIFR is positive in the early part
of the field and negative in the late part, while TDphase is negative
throughout, demonstrating that phase precession occurs during
both accelerating and decelerating spike trains, and that the firing
rate rises and falls within each run. Thus, again, a causal relationship
between phase precession and increasing rate is unlikely, consistent
with the much lower correlation of phase with firing rate than with
position (Fig. 1).
To see whether rate and phase dissociate on a run-by-run basis,

the runs with the highest and lowest firing rates for each cell were
identified so that the phase precession in both data sets could be
compared. Across the population, we found no difference in mean
phase precession between the high- and low-firing-rate runs.
Figure 3 shows that phase precession takes place equally on trials
with low as well as high firing rates, and even under conditions of
very low firing rates with two or fewer spikes per run (Fig. 3b). Thus
the dissociation of firing rate and firing phase is not due to effects
specific to the second part of the field such as habituation, spike
frequency accommodation, or to high- and low-rate runs being
combined in the overall mean rate. In addition, the above data rule
out any necessary coupling between phase precession and TDIFR

(compare ref. 5).
If the phase and firing rate can be independent, what variables

Figure 1 Place cell phase of firing correlates best with position. a, Behavioural task: rat
shuttles back and forth along linear track between food rewards contained in cups

attached to movable walls. b, False-colour firing field of a place cell created from multiple

runs in the eastward direction. c, EEG theta rhythm and place cell firing (in red) for the

same cell on a single eastward run. Ticks above the spikes indicate þ to 2 zero

crossings (08/3608 phase) for each theta wave, lines through theta waves indicate 2708.

Bursts of spikes occur at higher than theta frequency causing each successive burst to

move to an earlier phase of the theta cycle, despite initially rising, then falling firing

rate. Theta cycle phase of spikes for multiple runs from a place cell is plotted against

position (d), time (e) and instantaneous firing rate (IFR; f) in the place field. g, Phase
(adjusted for circularity, see Methods) is better correlated with location than with time or

firing rate across the population of cells. Here and in subsequent figures, vertical bars

represent ^s.e.m.

Figure 2 Phase precession is independent of IFR. a, Phase depends on location,
being highest in the early third of each field, lower in the middle third, and lowest in the

late third. b, Temporal derivative of phase (TDphase) is negative in each portion of the field
(68/76 fields in the early portion, P , 1 £ 10212; 57/76 in the middle, P , 1 £ 1025;

46/76 late, P , 0.05, binomial test). c, IFR starts low, increases in the middle third

and then decreases in the late part of the field. d, Temporal derivative of instantaneous
firing rate (TDIFR) starts high, falls towards zero in the middle third, and then goes negative

in the last third. Here and in subsequent figures, an asterisk denotes P , 0.05, and a

double asterisk denotes P , 0.01.
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is it possible for them to dissociate? Harris et al.5 reported an overall
relationship between phase and rate in spikes recorded on a linear
track, and our data show a similar relationship (Fig. 1g; Supplemen-
tary Fig. 1a, b). However, it is much weaker than the relationship
between phase and position (Fig. 1d; phase correlates better with
position than rate in 66/77 cells, P ¼ 5.3 £ 10211), and may result
directly from the relationship that both phase and rate hold with
position (Supplementary Fig. 1c). Mehta and colleagues6 reported
that, over the first few runs of a session, the firing fields became
more negatively skewed versus position and the phase precession
strengthened—suggesting that both rate and phase reflect the net
input to the cell and that this input becomes ramp-shaped,
increasing with distance through the field. Our fields show a
continuous range of negative, zero and positive skew, but there
was no correlation between skew and the rate or amount of phase
precession (Supplementary Fig. 2). Thus a causal relationship
between negative field skew and phase precession is unlikely, despite
both effects strengthening over the first few runs of a session.

To see whether phase and rate dissociate within a place field, each
field was divided into three equal segments: the beginning, middle
and end. The mean IFR and mean firing phase per theta cycle, and
their respective temporal derivatives (TDIFR and TDphase) for runs
through each segment of the field were averaged across the popu-
lation (Fig. 2). The mean phase per cycle continues to precess
throughout the entire run, despite the firing rate rising in the early
part of the field and then falling, and despite the increasing variance
of firing phase through the field6,14. TDIFR is positive in the early part
of the field and negative in the late part, while TDphase is negative
throughout, demonstrating that phase precession occurs during
both accelerating and decelerating spike trains, and that the firing
rate rises and falls within each run. Thus, again, a causal relationship
between phase precession and increasing rate is unlikely, consistent
with the much lower correlation of phase with firing rate than with
position (Fig. 1).
To see whether rate and phase dissociate on a run-by-run basis,

the runs with the highest and lowest firing rates for each cell were
identified so that the phase precession in both data sets could be
compared. Across the population, we found no difference in mean
phase precession between the high- and low-firing-rate runs.
Figure 3 shows that phase precession takes place equally on trials
with low as well as high firing rates, and even under conditions of
very low firing rates with two or fewer spikes per run (Fig. 3b). Thus
the dissociation of firing rate and firing phase is not due to effects
specific to the second part of the field such as habituation, spike
frequency accommodation, or to high- and low-rate runs being
combined in the overall mean rate. In addition, the above data rule
out any necessary coupling between phase precession and TDIFR

(compare ref. 5).
If the phase and firing rate can be independent, what variables

Figure 1 Place cell phase of firing correlates best with position. a, Behavioural task: rat
shuttles back and forth along linear track between food rewards contained in cups

attached to movable walls. b, False-colour firing field of a place cell created from multiple

runs in the eastward direction. c, EEG theta rhythm and place cell firing (in red) for the

same cell on a single eastward run. Ticks above the spikes indicate þ to 2 zero

crossings (08/3608 phase) for each theta wave, lines through theta waves indicate 2708.

Bursts of spikes occur at higher than theta frequency causing each successive burst to

move to an earlier phase of the theta cycle, despite initially rising, then falling firing

rate. Theta cycle phase of spikes for multiple runs from a place cell is plotted against

position (d), time (e) and instantaneous firing rate (IFR; f) in the place field. g, Phase
(adjusted for circularity, see Methods) is better correlated with location than with time or

firing rate across the population of cells. Here and in subsequent figures, vertical bars

represent ^s.e.m.

Figure 2 Phase precession is independent of IFR. a, Phase depends on location,
being highest in the early third of each field, lower in the middle third, and lowest in the

late third. b, Temporal derivative of phase (TDphase) is negative in each portion of the field
(68/76 fields in the early portion, P , 1 £ 10212; 57/76 in the middle, P , 1 £ 1025;

46/76 late, P , 0.05, binomial test). c, IFR starts low, increases in the middle third

and then decreases in the late part of the field. d, Temporal derivative of instantaneous
firing rate (TDIFR) starts high, falls towards zero in the middle third, and then goes negative

in the last third. Here and in subsequent figures, an asterisk denotes P , 0.05, and a

double asterisk denotes P , 0.01.

letters to nature

NATURE |VOL 425 | 23 OCTOBER 2003 | www.nature.com/nature 829© 2003        Nature  Publishing Group

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel
http://www.neuroinf.pl/accn
http://www.neuroinf.pl/accn


Máté Lengyel  |  Computational modelling of synaptic function http://www.eng.cam.ac.uk/~m.lengyelMPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

THE IMPORTANCE OF SPIKE TIMINGS IN THE HIPPOCAMPUS

12

Huxter et al, 1993

spike times convey
spatial information

Harris & al, 2003

spatio-temporal firing patterns
consistently reappear during
awake behavior

Louie and Wilson, 2001

… and sleep

is it possible for them to dissociate? Harris et al.5 reported an overall
relationship between phase and rate in spikes recorded on a linear
track, and our data show a similar relationship (Fig. 1g; Supplemen-
tary Fig. 1a, b). However, it is much weaker than the relationship
between phase and position (Fig. 1d; phase correlates better with
position than rate in 66/77 cells, P ¼ 5.3 £ 10211), and may result
directly from the relationship that both phase and rate hold with
position (Supplementary Fig. 1c). Mehta and colleagues6 reported
that, over the first few runs of a session, the firing fields became
more negatively skewed versus position and the phase precession
strengthened—suggesting that both rate and phase reflect the net
input to the cell and that this input becomes ramp-shaped,
increasing with distance through the field. Our fields show a
continuous range of negative, zero and positive skew, but there
was no correlation between skew and the rate or amount of phase
precession (Supplementary Fig. 2). Thus a causal relationship
between negative field skew and phase precession is unlikely, despite
both effects strengthening over the first few runs of a session.

To see whether phase and rate dissociate within a place field, each
field was divided into three equal segments: the beginning, middle
and end. The mean IFR and mean firing phase per theta cycle, and
their respective temporal derivatives (TDIFR and TDphase) for runs
through each segment of the field were averaged across the popu-
lation (Fig. 2). The mean phase per cycle continues to precess
throughout the entire run, despite the firing rate rising in the early
part of the field and then falling, and despite the increasing variance
of firing phase through the field6,14. TDIFR is positive in the early part
of the field and negative in the late part, while TDphase is negative
throughout, demonstrating that phase precession occurs during
both accelerating and decelerating spike trains, and that the firing
rate rises and falls within each run. Thus, again, a causal relationship
between phase precession and increasing rate is unlikely, consistent
with the much lower correlation of phase with firing rate than with
position (Fig. 1).
To see whether rate and phase dissociate on a run-by-run basis,

the runs with the highest and lowest firing rates for each cell were
identified so that the phase precession in both data sets could be
compared. Across the population, we found no difference in mean
phase precession between the high- and low-firing-rate runs.
Figure 3 shows that phase precession takes place equally on trials
with low as well as high firing rates, and even under conditions of
very low firing rates with two or fewer spikes per run (Fig. 3b). Thus
the dissociation of firing rate and firing phase is not due to effects
specific to the second part of the field such as habituation, spike
frequency accommodation, or to high- and low-rate runs being
combined in the overall mean rate. In addition, the above data rule
out any necessary coupling between phase precession and TDIFR

(compare ref. 5).
If the phase and firing rate can be independent, what variables

Figure 1 Place cell phase of firing correlates best with position. a, Behavioural task: rat
shuttles back and forth along linear track between food rewards contained in cups

attached to movable walls. b, False-colour firing field of a place cell created from multiple

runs in the eastward direction. c, EEG theta rhythm and place cell firing (in red) for the

same cell on a single eastward run. Ticks above the spikes indicate þ to 2 zero

crossings (08/3608 phase) for each theta wave, lines through theta waves indicate 2708.

Bursts of spikes occur at higher than theta frequency causing each successive burst to

move to an earlier phase of the theta cycle, despite initially rising, then falling firing

rate. Theta cycle phase of spikes for multiple runs from a place cell is plotted against

position (d), time (e) and instantaneous firing rate (IFR; f) in the place field. g, Phase
(adjusted for circularity, see Methods) is better correlated with location than with time or

firing rate across the population of cells. Here and in subsequent figures, vertical bars

represent ^s.e.m.

Figure 2 Phase precession is independent of IFR. a, Phase depends on location,
being highest in the early third of each field, lower in the middle third, and lowest in the

late third. b, Temporal derivative of phase (TDphase) is negative in each portion of the field
(68/76 fields in the early portion, P , 1 £ 10212; 57/76 in the middle, P , 1 £ 1025;

46/76 late, P , 0.05, binomial test). c, IFR starts low, increases in the middle third

and then decreases in the late part of the field. d, Temporal derivative of instantaneous
firing rate (TDIFR) starts high, falls towards zero in the middle third, and then goes negative

in the last third. Here and in subsequent figures, an asterisk denotes P , 0.05, and a

double asterisk denotes P , 0.01.
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is it possible for them to dissociate? Harris et al.5 reported an overall
relationship between phase and rate in spikes recorded on a linear
track, and our data show a similar relationship (Fig. 1g; Supplemen-
tary Fig. 1a, b). However, it is much weaker than the relationship
between phase and position (Fig. 1d; phase correlates better with
position than rate in 66/77 cells, P ¼ 5.3 £ 10211), and may result
directly from the relationship that both phase and rate hold with
position (Supplementary Fig. 1c). Mehta and colleagues6 reported
that, over the first few runs of a session, the firing fields became
more negatively skewed versus position and the phase precession
strengthened—suggesting that both rate and phase reflect the net
input to the cell and that this input becomes ramp-shaped,
increasing with distance through the field. Our fields show a
continuous range of negative, zero and positive skew, but there
was no correlation between skew and the rate or amount of phase
precession (Supplementary Fig. 2). Thus a causal relationship
between negative field skew and phase precession is unlikely, despite
both effects strengthening over the first few runs of a session.

To see whether phase and rate dissociate within a place field, each
field was divided into three equal segments: the beginning, middle
and end. The mean IFR and mean firing phase per theta cycle, and
their respective temporal derivatives (TDIFR and TDphase) for runs
through each segment of the field were averaged across the popu-
lation (Fig. 2). The mean phase per cycle continues to precess
throughout the entire run, despite the firing rate rising in the early
part of the field and then falling, and despite the increasing variance
of firing phase through the field6,14. TDIFR is positive in the early part
of the field and negative in the late part, while TDphase is negative
throughout, demonstrating that phase precession occurs during
both accelerating and decelerating spike trains, and that the firing
rate rises and falls within each run. Thus, again, a causal relationship
between phase precession and increasing rate is unlikely, consistent
with the much lower correlation of phase with firing rate than with
position (Fig. 1).
To see whether rate and phase dissociate on a run-by-run basis,

the runs with the highest and lowest firing rates for each cell were
identified so that the phase precession in both data sets could be
compared. Across the population, we found no difference in mean
phase precession between the high- and low-firing-rate runs.
Figure 3 shows that phase precession takes place equally on trials
with low as well as high firing rates, and even under conditions of
very low firing rates with two or fewer spikes per run (Fig. 3b). Thus
the dissociation of firing rate and firing phase is not due to effects
specific to the second part of the field such as habituation, spike
frequency accommodation, or to high- and low-rate runs being
combined in the overall mean rate. In addition, the above data rule
out any necessary coupling between phase precession and TDIFR

(compare ref. 5).
If the phase and firing rate can be independent, what variables

Figure 1 Place cell phase of firing correlates best with position. a, Behavioural task: rat
shuttles back and forth along linear track between food rewards contained in cups

attached to movable walls. b, False-colour firing field of a place cell created from multiple

runs in the eastward direction. c, EEG theta rhythm and place cell firing (in red) for the

same cell on a single eastward run. Ticks above the spikes indicate þ to 2 zero

crossings (08/3608 phase) for each theta wave, lines through theta waves indicate 2708.

Bursts of spikes occur at higher than theta frequency causing each successive burst to

move to an earlier phase of the theta cycle, despite initially rising, then falling firing

rate. Theta cycle phase of spikes for multiple runs from a place cell is plotted against

position (d), time (e) and instantaneous firing rate (IFR; f) in the place field. g, Phase
(adjusted for circularity, see Methods) is better correlated with location than with time or

firing rate across the population of cells. Here and in subsequent figures, vertical bars

represent ^s.e.m.

Figure 2 Phase precession is independent of IFR. a, Phase depends on location,
being highest in the early third of each field, lower in the middle third, and lowest in the

late third. b, Temporal derivative of phase (TDphase) is negative in each portion of the field
(68/76 fields in the early portion, P , 1 £ 10212; 57/76 in the middle, P , 1 £ 1025;

46/76 late, P , 0.05, binomial test). c, IFR starts low, increases in the middle third

and then decreases in the late part of the field. d, Temporal derivative of instantaneous
firing rate (TDIFR) starts high, falls towards zero in the middle third, and then goes negative

in the last third. Here and in subsequent figures, an asterisk denotes P , 0.05, and a

double asterisk denotes P , 0.01.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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❖ input is ambiguous

on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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❖ input is ambiguous
❖ storage in synapses loses information

on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.

1678 VOLUME 8 [ NUMBER 12 [ DECEMBER 2005 NATURE NEUROSCIENCE

ART ICLES

©
2
0
0
5
 N

a
tu

re
 P

u
b

li
s

h
in

g
 G

ro
u

p
  

h
tt

p
:/

/w
w

w
.n

a
tu

re
.c

o
m

/n
a
tu

re
n

e
u

ro
s
c
ie

n
c
e

2 0 5 3

stored activities
x1 x2 x3 x4

3 8 2 1

input for retrieval

2 8 2 3

storage in synaptic efficacies

x̃1 x̃2 x̃3 x̃4

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel
http://www.neuroinf.pl/accn
http://www.neuroinf.pl/accn


Máté Lengyel  |  Computational modelling of synaptic function http://www.eng.cam.ac.uk/~m.lengyelMPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

MEMORY RETRIEVAL AS PROBABILISTIC INFERENCE

13

❖ input is ambiguous
❖ storage in synapses loses information

on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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❖ input is ambiguous
❖ storage in synapses loses information
❖ prior knowledge about kind of patterns stored

on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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❖ input is ambiguous
❖ storage in synapses loses information
❖ prior knowledge about kind of patterns stored

on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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16

strengthen

weaken

on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with

i = 1

1

0.2

0.1

–0.1
–2 0 2

0

0

–1
–50 50S

yn
a
p
tic

 w
e
ig

h
t 
ch

a
n
g
e

Spike timing–dependent plasticity

0

X1W1N

W
N4

W13

W12 W32

X2 X3 X4 X
N

2 3 4 N

2

Delay

Advance

P
h
a
se

 r
e
sp

o
n
se

 (
ra

d
)

Coupling function

P
h
a
se

 r
e
sp

o
n
se

 (
ra

d
)

Phase response curves

Phase of EPSP (rad)

1

0

–1
–2 0 2

φpre– φpost (rad)

tpre– tpost (ms)

a b

dc

Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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(12,000 recurrent synapses per CA3 pyramidal cell4, as opposed to
the maximal 200 synapses used in our simulations) will be a
highly competent spike timing–based autoassociator. Further, perfor-
mance degraded only weakly even if the STDP was asymmetric: for
instance, with the potentiation having larger maximal amplitude
and tighter time frame than depression34 (Supplementary Fig. 1).
Performance was more sensitive to a mismatch between storage rule
and recall dynamics.

Characteristics of the optimal phase response curve
The theoretically optimal PRC (Fig. 1d) for autoassociative memory
recall has five salient characteristics. First, excitatory currents can cause
both delay (positive parts) and advancement (negative parts) of the
next spike. Second, spike delay is predicted for EPSPs that follow
postsynaptic spiking. Third, EPSPs immediately preceding postsynap-
tic spikes should have negligible effect on postsynaptic spikes. Fourth,
EPSPs before this insensitive period or after the interval where delay is
predicted should result in advancement. Fifth, based on equation (3)
and shown as different colored lines in Figure 1d, the effect of
presynaptic spiking on the phase response should scale with the
synaptic weight between the two cells. The optimal scaling of the
PRC is not exactly linear, but its zero crossings (relative spike times for
which no phase shift is predicted) should be unaffected by changing the
synaptic weight. Type II oscillators, such as the Hodgkin-Huxley
model, show spiking behavior that broadly complies with these cri-
teria38, thus suggesting that real neurons may implement similar PRCs.
These features are preserved (Supplementary Fig. 2 online)

for a range of STDP curves that satisfy a few qualitative properties:
potentiation for pre- before postsynaptic firings, depotentiation for

post- before presynaptic firings, pre- and postsynaptic spikes required
to appear within a limited time window for both, and a transitionary
regime between the potentiation and depotentiation at around zero
time difference.
The optimal PRC also seems to be insensitive to inputs arriving in

the middle of the spiking cycle (shown as the two flat flanks of the PRC
in Fig. 1d), unlike most biophysically plausible PRCs26. This insensi-
tivity is predicted because the function used to fit experimental STDP
curves converges to zero and is therefore already flat at 25 ms (Fig. 1b,
black line), whereas for the conversion from spike time to phase, the
length of the theta cycle was assumed to be 125 ms (corresponding to
the widely reported 8 Hz theta frequency35). A shallower fall-off of the
STDP curve (as shown by the original exponential fit of the data;
Fig. 1b, gray line) or a higher theta frequency would diminish this
region, leading to the fusion of the two intervals where advancement is
predicted (Supplementary Fig. 2).

Phase response curves of hippocampal CA3 pyramidal cells
We used somatic whole-cell patch-clamp recordings from CA3 pyr-
amidal neurons in acute hippocampal slices to measure the PRC for
comparison with the theory. Theta oscillation was simulated by a
somatic oscillatory inhibitory conductance, as is also observed in vivo35,
and excitatory synaptic input was delivered by extracellular stimulation
(Fig. 3a,b). We confirmed experimentally that excitatory input could
both delay and advance spikes (Fig. 3c). As predicted by theory, delay
was observed in the next cycle when EPSP followed immediately after a
spike, and advancement was observed when EPSP occurred before the
expected spike or well after the previous spike (Fig. 3d,e; n ¼ 7 cells).
To confirm that both phase advancement and phase delay are due to

the EPSP itself, and not to some other extracellular stimulation-evoked
modulatory or network event, we repeated the experiment using
dynamic clamp to simulate an excitatory input conductance (Fig. 4).
Indeed, the same effects of phase delay and phase advancement were
observed using artificial excitatory postsynaptic conductances (EPSGs,
Fig. 4a,b). Moreover, we also confirmed that the effect on phase
advancement and phase delay increased with synaptic conductance,
with the zero crossings of the PRC remaining relatively unaffected
(Fig. 4c), as predicted by theory (Fig. 1d). Similar results were obtained
in seven other cells. Finally, in order to test the generalizability of our
findings, we recorded PRCs at a higher but still within-theta band
frequency (Supplementary Fig. 3 online) as well as in response
to bursts of EPSGs (Supplementary Fig. 4 online) and found
that PRCs were preserved under these conditions. In sum, individual
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Figure 3 Experimental measurement of the PRC in CA3 hippocampal
neurons. (a) Diagram of a CA3 hippocampal neuron with patch recording
electrode at the soma and extracellular stimulation electrode among recurrent
fibers in the stratum oriens. Sinusoidal inhibitory conductance mimicking
hippocampal theta oscillation (5 Hz) was injected through the patch pipette
using dynamic clamp. An EPSP was evoked using extracellular stimulation.
(b) Average somatic EPSP recorded in response to extracellular stimulation
without oscillation (n ¼ 5). (c) Sample of current-clamp recordings showing
the phase response of a CA3 neuron (gray trace) to the stimulated EPSP
(arrows; times of stimulation) during 5 Hz oscillation (black trace). (d) Plot of
phase delay and advancement of the spike as a function of the phase of the
EPSP. ‘Zero’ phase was defined as the average phase at which spikes
occurred during 5 Hz oscillation without EPSP (vertical dotted lines in c).
The PRC (open circles) was subject to Gaussian smoothing (gray line).
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EPSP. (e) Smoothed PRCs (gray lines) and raw data points (filled black
circles) normalized for n ¼ 7 cells. Note that there are virtually no data
points in the second quadrant.

1680 VOLUME 8 [ NUMBER 12 [ DECEMBER 2005 NATURE NEUROSCIENCE

ART ICLES

©
2
0
0
5
 N

a
tu

re
 P

u
b

li
s
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
a

tu
re

.c
o

m
/n

a
tu

re
n

e
u

ro
s

c
ie

n
c

e

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel
http://www.neuroinf.pl/accn
http://www.neuroinf.pl/accn


Máté Lengyel  |  Computational modelling of synaptic function http://www.eng.cam.ac.uk/~m.lengyelMPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

TESTING THE PREDICTION IN VITRO

19

(12,000 recurrent synapses per CA3 pyramidal cell4, as opposed to
the maximal 200 synapses used in our simulations) will be a
highly competent spike timing–based autoassociator. Further, perfor-
mance degraded only weakly even if the STDP was asymmetric: for
instance, with the potentiation having larger maximal amplitude
and tighter time frame than depression34 (Supplementary Fig. 1).
Performance was more sensitive to a mismatch between storage rule
and recall dynamics.

Characteristics of the optimal phase response curve
The theoretically optimal PRC (Fig. 1d) for autoassociative memory
recall has five salient characteristics. First, excitatory currents can cause
both delay (positive parts) and advancement (negative parts) of the
next spike. Second, spike delay is predicted for EPSPs that follow
postsynaptic spiking. Third, EPSPs immediately preceding postsynap-
tic spikes should have negligible effect on postsynaptic spikes. Fourth,
EPSPs before this insensitive period or after the interval where delay is
predicted should result in advancement. Fifth, based on equation (3)
and shown as different colored lines in Figure 1d, the effect of
presynaptic spiking on the phase response should scale with the
synaptic weight between the two cells. The optimal scaling of the
PRC is not exactly linear, but its zero crossings (relative spike times for
which no phase shift is predicted) should be unaffected by changing the
synaptic weight. Type II oscillators, such as the Hodgkin-Huxley
model, show spiking behavior that broadly complies with these cri-
teria38, thus suggesting that real neurons may implement similar PRCs.
These features are preserved (Supplementary Fig. 2 online)

for a range of STDP curves that satisfy a few qualitative properties:
potentiation for pre- before postsynaptic firings, depotentiation for

post- before presynaptic firings, pre- and postsynaptic spikes required
to appear within a limited time window for both, and a transitionary
regime between the potentiation and depotentiation at around zero
time difference.
The optimal PRC also seems to be insensitive to inputs arriving in

the middle of the spiking cycle (shown as the two flat flanks of the PRC
in Fig. 1d), unlike most biophysically plausible PRCs26. This insensi-
tivity is predicted because the function used to fit experimental STDP
curves converges to zero and is therefore already flat at 25 ms (Fig. 1b,
black line), whereas for the conversion from spike time to phase, the
length of the theta cycle was assumed to be 125 ms (corresponding to
the widely reported 8 Hz theta frequency35). A shallower fall-off of the
STDP curve (as shown by the original exponential fit of the data;
Fig. 1b, gray line) or a higher theta frequency would diminish this
region, leading to the fusion of the two intervals where advancement is
predicted (Supplementary Fig. 2).

Phase response curves of hippocampal CA3 pyramidal cells
We used somatic whole-cell patch-clamp recordings from CA3 pyr-
amidal neurons in acute hippocampal slices to measure the PRC for
comparison with the theory. Theta oscillation was simulated by a
somatic oscillatory inhibitory conductance, as is also observed in vivo35,
and excitatory synaptic input was delivered by extracellular stimulation
(Fig. 3a,b). We confirmed experimentally that excitatory input could
both delay and advance spikes (Fig. 3c). As predicted by theory, delay
was observed in the next cycle when EPSP followed immediately after a
spike, and advancement was observed when EPSP occurred before the
expected spike or well after the previous spike (Fig. 3d,e; n ¼ 7 cells).
To confirm that both phase advancement and phase delay are due to

the EPSP itself, and not to some other extracellular stimulation-evoked
modulatory or network event, we repeated the experiment using
dynamic clamp to simulate an excitatory input conductance (Fig. 4).
Indeed, the same effects of phase delay and phase advancement were
observed using artificial excitatory postsynaptic conductances (EPSGs,
Fig. 4a,b). Moreover, we also confirmed that the effect on phase
advancement and phase delay increased with synaptic conductance,
with the zero crossings of the PRC remaining relatively unaffected
(Fig. 4c), as predicted by theory (Fig. 1d). Similar results were obtained
in seven other cells. Finally, in order to test the generalizability of our
findings, we recorded PRCs at a higher but still within-theta band
frequency (Supplementary Fig. 3 online) as well as in response
to bursts of EPSGs (Supplementary Fig. 4 online) and found
that PRCs were preserved under these conditions. In sum, individual
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Figure 3 Experimental measurement of the PRC in CA3 hippocampal
neurons. (a) Diagram of a CA3 hippocampal neuron with patch recording
electrode at the soma and extracellular stimulation electrode among recurrent
fibers in the stratum oriens. Sinusoidal inhibitory conductance mimicking
hippocampal theta oscillation (5 Hz) was injected through the patch pipette
using dynamic clamp. An EPSP was evoked using extracellular stimulation.
(b) Average somatic EPSP recorded in response to extracellular stimulation
without oscillation (n ¼ 5). (c) Sample of current-clamp recordings showing
the phase response of a CA3 neuron (gray trace) to the stimulated EPSP
(arrows; times of stimulation) during 5 Hz oscillation (black trace). (d) Plot of
phase delay and advancement of the spike as a function of the phase of the
EPSP. ‘Zero’ phase was defined as the average phase at which spikes
occurred during 5 Hz oscillation without EPSP (vertical dotted lines in c).
The PRC (open circles) was subject to Gaussian smoothing (gray line).
Horizontal dotted lines show ± 2 s.d. of the average spike phase without
EPSP. (e) Smoothed PRCs (gray lines) and raw data points (filled black
circles) normalized for n ¼ 7 cells. Note that there are virtually no data
points in the second quadrant.
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CA3 pyramidal neurons demonstrate intrinsic dynamics that
support optimal retrieval of information by phase coding according
to our theory.

DISCUSSION
We report a normative theory of statistically sound recall in analog
associative memory networks. We have shown that the theory makes a
direct link between the rule governing spike timing–dependent synaptic
plasticity and the neurons’ PRCs, and we have qualitatively confirmed
the precepts of the theory by recording conformant PRCs from
hippocampal CA3 neurons.
Our technique treats analog autoassociative memory from a prob-

abilistic viewpoint32,33, deriving a general relationship between (i) the
nature and representational substrate of the memory traces and the
rules governing neural plasticity, and (ii) the dynamical behavior
during recall that would approximately solve a formally presented
task such as pattern completion or noise removal. Applied to the case of
memory traces represented as phases, and stored by an STDP rule
(derived from data from cultured hippocampal neurons34), the result-
ing dynamics specified a form of PRC. Not only were the general
characteristics of this PRC consistent with those in the CA3 data (for
instance, the existence of delays and advances), but also the more
detailed predictions were matched, such as the scaling of the PRC with
the input (in the dynamic clamp experiments) and even the form of the
delays and advances relative to the standard firing phase. It is not at all
trivial that the resulting PRC that was expected had a biophysically
reasonable form, let alone that it matched actual PRCs in CA3. Indeed,
in contrast to the type II–like PRCs we recorded here in hippocampal

CA3 pyramidal cells, classical integrate-and-fire dynamics produce
only phase advancement in response to excitatory inputs26, and even
neocortical pyramidal cells show phase response characteristics of Type
I membranes and thus lack a delay component in their PRCs40. It is also
not trivial that the network performed recall competently, as analog
autoassociative memory is hard15.
Our theoretical framework embodied a number of simplifying

assumptions that allowed for an analytical derivation of the optimal
recall dynamics but whose biological plausibility may seem to be
unclear. We explicitly tested the incorporation of storage noise, limited
connectivity and asymmetry in the STDP rule (Supplementary
Fig. 1), showing that none of these had an importantly deleterious
effect on performance. As one might expect from the framework, the
most marked sensitivity is to mismatch between storage and recall
(Supplementary Fig. 1).
One more holistic assumption was that, in line with the traditional

theory of autoassociativememories3,5, we treatedmemory encoding and
retrieval separately, as distinct modes of operation. Specifically, neural
activities during encoding were clamped to the memory patterns being
stored so that the intrinsic dynamics of the network did not contribute
to this process. Although, in its extreme form, this assumption is
certainly unrealistic, there is suggestive data that changing levels of
acetylcholine neuromodulation may result in the separation of memory
encoding and retrieval in the hippocampus and related structures by
selectively suppressing transmission and plasticity in afferent or internal
synaptic pathways during these two operational modes41.
Another assumptionwas to have addressed only the simplest form of

oscillatory memory inwhich all neurons fired once per cycle. This was a
marked abstraction of the hippocampus, whose pyramidal cells often
fire bursts of action potentials in vivo16,18. The induction of synaptic
plasticity is also most effective when bursts rather than single spikes are
used in the stimulation protocol23, and spike timing–dependent
plasticity has been shown to encompass multi-spike interactions42

and to be sensitive to the firing rate of pre- and postsynaptic cells43.
Thus, an extension to a joint rate- and phase-based code for informa-
tion is pressing44–46. We suggest that the choice of the number of spikes
fired in a cycle (including no spikes) could convey orthogonal informa-
tion, characterizing the certainty a neuron has about its phase or,
indeed, its relevance for the given pattern (M.L. and P.D., unpublished
data). Under this account, the consequences of firing potentially
multiple spikes per theta cycle for memory encoding are straightfor-
ward: some memories will be stored and therefore retrieved with
greater efficiency. Retrieval dynamics would also have to take into
account the extra information conveyed by instantaneous firing rates.
Preliminary experimental results (Supplementary Fig. 4) are compa-
tible with the conclusion from the extension of our theory that
interactions between bursting cells should be scaled versions of single
spike-based PRCs.
An intriguing suggestion evident in the single-case figures (Figs. 3c

and 4a) is that, after a stimulation, not only is the phase of the very next
spike altered but also the phases of a few successive spikes change27.
Depending on the assumptions postsynaptic neuronal mechanisms
might embody about a neuron’s presynaptic cousins, the theory can
predict various forms for these multistep PRCs; it would therefore be
interesting to characterize these more fully.
Finally, oscillations in one structure are only a small part of the

overall puzzle of memory. There is increasing evidence for the involve-
ment of multiple structures that undergo oscillations of potentially
different frequencies and intermittencies36 but are nevertheless tightly
and jointly regulated10,47,48. Perhaps a first step will be to generalize and
abstract away from single-neuron PRCs to a form of population PRC,
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Figure 4 Effect of EPSG amplitude on the PRC. (a) Sample of current-clamp
recordings showing the response of a CA3 neuron (gray trace) to the EPSG
during 5 Hz oscillation (black trace). The vertical dashed line represents the
average phase at which spikes occurred during 5 Hz oscillation without
EPSG. (b) Plot of phase delay and advancement of spike as a function of the
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smoothing (gray line). Horizontal dotted lines show ± 2 s.d. of the average
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(green) and 2 nS (blue).
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Figure 2: a. Recall performance for a single module memory system. Note difference in y-scales.
b. Average recollection error comparison for the single and dual memory system. Black lines mark
control performance, when ignoring the information from the synaptic weights.

Intuitively, one can see that relying on the prior over t is similar to assuming t fixed to a value close
to the mean of this prior. When the pattern that was actually presented is older than this estimate, the
resulting memory signal is weaker than expected, suggesting that the initial pattern was very sparse
(since a pair of inactive elements does not induce any synaptic changes according to our learning
rule). Still, when averaging the performance over patterns of all ages, distributed according to the
prior for t, the average error should be smaller than the control.

One warning sign is that average performance is actually worse than trivial for certain learning rule
parameters. A possible interpretation is that the sampling procedure used for inference does not work
in certain cases. Since Gibbs samplers are known to mix poorly when the shape of the posterior
is complex (with strong correlations, as in frustrated Ising models), perhaps our neural dynamics
cannot sample the desired distribution effectively in certain cases. With more complex synaptic
dynamics (e.g. deeper cascades) it works reasonably well (data not shown), probably because the
posterior is smoother and hence easier to sample from.

We confirmed this hypothesis by implementing a more sophisticated sampling procedure using tem-
pered transitions [10] (details in supplementary text). Indeed, when using this more powerful sam-
pling procedure, performance becomes significantly better than control, even for the cases where
Gibbs sampling fails (Fig. 2b). Unfortunately, there has yet to be a convincing suggestion as to how
tempering dynamics can be represented neurally since, for example, they require a global acceptance
decision to be taken at the end of each temperature cycle.

4 A dual memory system

An alternative to implicitly marginalizing over the age of the pattern throughout the inference pro-
cess is to estimate it at the same time as performing recollection. This suggests the use of dual
modules that together estimate the joint posterior P (x, t|˜x,W), with sampling proceeding in a
loop: the familiarity module generates a sample from the posterior over the age of the currently esti-
mated pattern, P(t|x,

˜

x,W); and the recollection module uses this estimated age to compute a new
sample from the distribution over possible stored patterns given the age, P (x|˜x,W, t) (Fig. 3a).

The module that computes familiarity can also be seen as a palimpsest, with each pattern overlaying,
and being overlaid by, its predecessors and successors. Formally, it needs to compute the probability
P(t|x,

˜

x,W), as the system continues to implement a Gibbs sampler with t as an additional dimen-
sion. As a separate module, the neural network estimating familiarity cannot however access the
weights W of the recollection module. A biologically plausible approximation is to assume that
the familiarity module uses a separate set of weights, which we call W

fam. Also, it is clear from
Fig. 1b that t is independent of ˜

x conditioned on x, thus the conditioning on ˜

x can be dropped when
computing the posterior over t, that is, external input need only feed directly into the recollection
but not the familiarity module (Fig. 3a).
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to the mean of this prior. When the pattern that was actually presented is older than this estimate, the
resulting memory signal is weaker than expected, suggesting that the initial pattern was very sparse
(since a pair of inactive elements does not induce any synaptic changes according to our learning
rule). Still, when averaging the performance over patterns of all ages, distributed according to the
prior for t, the average error should be smaller than the control.

One warning sign is that average performance is actually worse than trivial for certain learning rule
parameters. A possible interpretation is that the sampling procedure used for inference does not work
in certain cases. Since Gibbs samplers are known to mix poorly when the shape of the posterior
is complex (with strong correlations, as in frustrated Ising models), perhaps our neural dynamics
cannot sample the desired distribution effectively in certain cases. With more complex synaptic
dynamics (e.g. deeper cascades) it works reasonably well (data not shown), probably because the
posterior is smoother and hence easier to sample from.

We confirmed this hypothesis by implementing a more sophisticated sampling procedure using tem-
pered transitions [10] (details in supplementary text). Indeed, when using this more powerful sam-
pling procedure, performance becomes significantly better than control, even for the cases where
Gibbs sampling fails (Fig. 2b). Unfortunately, there has yet to be a convincing suggestion as to how
tempering dynamics can be represented neurally since, for example, they require a global acceptance
decision to be taken at the end of each temperature cycle.

4 A dual memory system

An alternative to implicitly marginalizing over the age of the pattern throughout the inference pro-
cess is to estimate it at the same time as performing recollection. This suggests the use of dual
modules that together estimate the joint posterior P (x, t|˜x,W), with sampling proceeding in a
loop: the familiarity module generates a sample from the posterior over the age of the currently esti-
mated pattern, P(t|x,
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x,W); and the recollection module uses this estimated age to compute a new
sample from the distribution over possible stored patterns given the age, P (x|˜x,W, t) (Fig. 3a).

The module that computes familiarity can also be seen as a palimpsest, with each pattern overlaying,
and being overlaid by, its predecessors and successors. Formally, it needs to compute the probability
P(t|x,
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x,W), as the system continues to implement a Gibbs sampler with t as an additional dimen-
sion. As a separate module, the neural network estimating familiarity cannot however access the
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Intuitively, one can see that relying on the prior over t is similar to assuming t fixed to a value close
to the mean of this prior. When the pattern that was actually presented is older than this estimate, the
resulting memory signal is weaker than expected, suggesting that the initial pattern was very sparse
(since a pair of inactive elements does not induce any synaptic changes according to our learning
rule). Still, when averaging the performance over patterns of all ages, distributed according to the
prior for t, the average error should be smaller than the control.

One warning sign is that average performance is actually worse than trivial for certain learning rule
parameters. A possible interpretation is that the sampling procedure used for inference does not work
in certain cases. Since Gibbs samplers are known to mix poorly when the shape of the posterior
is complex (with strong correlations, as in frustrated Ising models), perhaps our neural dynamics
cannot sample the desired distribution effectively in certain cases. With more complex synaptic
dynamics (e.g. deeper cascades) it works reasonably well (data not shown), probably because the
posterior is smoother and hence easier to sample from.

We confirmed this hypothesis by implementing a more sophisticated sampling procedure using tem-
pered transitions [10] (details in supplementary text). Indeed, when using this more powerful sam-
pling procedure, performance becomes significantly better than control, even for the cases where
Gibbs sampling fails (Fig. 2b). Unfortunately, there has yet to be a convincing suggestion as to how
tempering dynamics can be represented neurally since, for example, they require a global acceptance
decision to be taken at the end of each temperature cycle.

4 A dual memory system

An alternative to implicitly marginalizing over the age of the pattern throughout the inference pro-
cess is to estimate it at the same time as performing recollection. This suggests the use of dual
modules that together estimate the joint posterior P (x, t|˜x,W), with sampling proceeding in a
loop: the familiarity module generates a sample from the posterior over the age of the currently esti-
mated pattern, P(t|x,

˜

x,W); and the recollection module uses this estimated age to compute a new
sample from the distribution over possible stored patterns given the age, P (x|˜x,W, t) (Fig. 3a).

The module that computes familiarity can also be seen as a palimpsest, with each pattern overlaying,
and being overlaid by, its predecessors and successors. Formally, it needs to compute the probability
P(t|x,

˜

x,W), as the system continues to implement a Gibbs sampler with t as an additional dimen-
sion. As a separate module, the neural network estimating familiarity cannot however access the
weights W of the recollection module. A biologically plausible approximation is to assume that
the familiarity module uses a separate set of weights, which we call W

fam. Also, it is clear from
Fig. 1b that t is independent of ˜

x conditioned on x, thus the conditioning on ˜

x can be dropped when
computing the posterior over t, that is, external input need only feed directly into the recollection
but not the familiarity module (Fig. 3a).
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- familiarity = pattern age; can be relaxed

- benefits not restricted to sampling
  based representation 

- extended ensemble method (Iba 2001)

The problem

- neural computation involves nonlinear manipulation of analogue quantities 

- spikes are impoverished representations of the relevant presynaptic variables
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Conclusions

� active dendrites can act as optimal estimators for multiple presynaptic spike trains

� nonlinear dendritic tree is necessary even if the computation is linear

� positive correlations imply sublinear interactions, whereas synchronous state switches 
cause superlinear effects
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Intuitively, one can see that relying on the prior over t is similar to assuming t fixed to a value close
to the mean of this prior. When the pattern that was actually presented is older than this estimate, the
resulting memory signal is weaker than expected, suggesting that the initial pattern was very sparse
(since a pair of inactive elements does not induce any synaptic changes according to our learning
rule). Still, when averaging the performance over patterns of all ages, distributed according to the
prior for t, the average error should be smaller than the control.

One warning sign is that average performance is actually worse than trivial for certain learning rule
parameters. A possible interpretation is that the sampling procedure used for inference does not work
in certain cases. Since Gibbs samplers are known to mix poorly when the shape of the posterior
is complex (with strong correlations, as in frustrated Ising models), perhaps our neural dynamics
cannot sample the desired distribution effectively in certain cases. With more complex synaptic
dynamics (e.g. deeper cascades) it works reasonably well (data not shown), probably because the
posterior is smoother and hence easier to sample from.

We confirmed this hypothesis by implementing a more sophisticated sampling procedure using tem-
pered transitions [10] (details in supplementary text). Indeed, when using this more powerful sam-
pling procedure, performance becomes significantly better than control, even for the cases where
Gibbs sampling fails (Fig. 2b). Unfortunately, there has yet to be a convincing suggestion as to how
tempering dynamics can be represented neurally since, for example, they require a global acceptance
decision to be taken at the end of each temperature cycle.

4 A dual memory system

An alternative to implicitly marginalizing over the age of the pattern throughout the inference pro-
cess is to estimate it at the same time as performing recollection. This suggests the use of dual
modules that together estimate the joint posterior P (x, t|˜x,W), with sampling proceeding in a
loop: the familiarity module generates a sample from the posterior over the age of the currently esti-
mated pattern, P(t|x,

˜

x,W); and the recollection module uses this estimated age to compute a new
sample from the distribution over possible stored patterns given the age, P (x|˜x,W, t) (Fig. 3a).

The module that computes familiarity can also be seen as a palimpsest, with each pattern overlaying,
and being overlaid by, its predecessors and successors. Formally, it needs to compute the probability
P(t|x,

˜

x,W), as the system continues to implement a Gibbs sampler with t as an additional dimen-
sion. As a separate module, the neural network estimating familiarity cannot however access the
weights W of the recollection module. A biologically plausible approximation is to assume that
the familiarity module uses a separate set of weights, which we call W

fam. Also, it is clear from
Fig. 1b that t is independent of ˜

x conditioned on x, thus the conditioning on ˜

x can be dropped when
computing the posterior over t, that is, external input need only feed directly into the recollection
but not the familiarity module (Fig. 3a).
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- familiarity preferrentially contributes to the recognition of recent patterns

- predicts interaction between hippocampus and perirhinal cortex during 
��UHFROOHFWLRQ��QHZ�SHUVSHFWLYH�RQ�GXDO�PRGXOH�V\VWHPV�IRU�UHFRJQLWLRQ�

- familiarity = pattern age; can be relaxed

- benefits not restricted to sampling
  based representation 

- extended ensemble method (Iba 2001)

The problem

- neural computation involves nonlinear manipulation of analogue quantities 

- spikes are impoverished representations of the relevant presynaptic variables

Nonlinearities in the mOU-NP model
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simple model illustrates well the main points of the theory
supralinear integration is not feasible
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- the hidden state changes the parameters of the linear Gaussian process
��DVVXPHG�GHQVLW\�ÀOWHULQJ: the conditional posteriors                     are approximated 
  with a multivariate Gaussian in each time step
��ZH�ÀWWHG�WKH�PRGHO�WR�in vitro recordings from cortical neurons 

in vivo�SDLUHG�UHFRUGLQJV��*HQWHW�HW�DO�������� membrane potential trace sampled from the model after 
ÀWWLQJ�LW�WR�H[SHULPHQWDO�GDWD

� membrane potential trace from the model qualitatively matches in vivo patterns 
recorded from cortical neurons

experimental data model

in vitro�UHFRUGLQJV��3ROVN\�HW�DO��������

Conclusions

� active dendrites can act as optimal estimators for multiple presynaptic spike trains

� nonlinear dendritic tree is necessary even if the computation is linear

� positive correlations imply sublinear interactions, whereas synchronous state switches 
cause superlinear effects
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Figure 2: a. Recall performance for a single module memory system. Note difference in y-scales.
b. Average recollection error comparison for the single and dual memory system. Black lines mark
control performance, when ignoring the information from the synaptic weights.

Intuitively, one can see that relying on the prior over t is similar to assuming t fixed to a value close
to the mean of this prior. When the pattern that was actually presented is older than this estimate, the
resulting memory signal is weaker than expected, suggesting that the initial pattern was very sparse
(since a pair of inactive elements does not induce any synaptic changes according to our learning
rule). Still, when averaging the performance over patterns of all ages, distributed according to the
prior for t, the average error should be smaller than the control.

One warning sign is that average performance is actually worse than trivial for certain learning rule
parameters. A possible interpretation is that the sampling procedure used for inference does not work
in certain cases. Since Gibbs samplers are known to mix poorly when the shape of the posterior
is complex (with strong correlations, as in frustrated Ising models), perhaps our neural dynamics
cannot sample the desired distribution effectively in certain cases. With more complex synaptic
dynamics (e.g. deeper cascades) it works reasonably well (data not shown), probably because the
posterior is smoother and hence easier to sample from.

We confirmed this hypothesis by implementing a more sophisticated sampling procedure using tem-
pered transitions [10] (details in supplementary text). Indeed, when using this more powerful sam-
pling procedure, performance becomes significantly better than control, even for the cases where
Gibbs sampling fails (Fig. 2b). Unfortunately, there has yet to be a convincing suggestion as to how
tempering dynamics can be represented neurally since, for example, they require a global acceptance
decision to be taken at the end of each temperature cycle.

4 A dual memory system

An alternative to implicitly marginalizing over the age of the pattern throughout the inference pro-
cess is to estimate it at the same time as performing recollection. This suggests the use of dual
modules that together estimate the joint posterior P (x, t|˜x,W), with sampling proceeding in a
loop: the familiarity module generates a sample from the posterior over the age of the currently esti-
mated pattern, P(t|x,

˜

x,W); and the recollection module uses this estimated age to compute a new
sample from the distribution over possible stored patterns given the age, P (x|˜x,W, t) (Fig. 3a).

The module that computes familiarity can also be seen as a palimpsest, with each pattern overlaying,
and being overlaid by, its predecessors and successors. Formally, it needs to compute the probability
P(t|x,

˜

x,W), as the system continues to implement a Gibbs sampler with t as an additional dimen-
sion. As a separate module, the neural network estimating familiarity cannot however access the
weights W of the recollection module. A biologically plausible approximation is to assume that
the familiarity module uses a separate set of weights, which we call W

fam. Also, it is clear from
Fig. 1b that t is independent of ˜

x conditioned on x, thus the conditioning on ˜

x can be dropped when
computing the posterior over t, that is, external input need only feed directly into the recollection
but not the familiarity module (Fig. 3a).
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 (Sommer Dayan 1998; Lengyel et al 2005) 
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- all-to-all connectivity (can be relaxed)
- recurrent network of excitatory neurons
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- recall cue = noisy version of original pattern
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take into account synaptic correlation by approximating the evidence from the weight by a 
weights with a Boltzmann distribution (max entropy model given first 2 moments):

revised expression for recurrent input:
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- familiarity preferrentially contributes to the recognition of recent patterns

- predicts interaction between hippocampus and perirhinal cortex during 
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- familiarity = pattern age; can be relaxed

- benefits not restricted to sampling
  based representation 

- extended ensemble method (Iba 2001)

The problem

- neural computation involves nonlinear manipulation of analogue quantities 

- spikes are impoverished representations of the relevant presynaptic variables
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simple model illustrates well the main points of the theory
supralinear integration is not feasible
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- the hidden state changes the parameters of the linear Gaussian process
��DVVXPHG�GHQVLW\�ÀOWHULQJ: the conditional posteriors                     are approximated 
  with a multivariate Gaussian in each time step
��ZH�ÀWWHG�WKH�PRGHO�WR�in vitro recordings from cortical neurons 

in vivo�SDLUHG�UHFRUGLQJV��*HQWHW�HW�DO�������� membrane potential trace sampled from the model after 
ÀWWLQJ�LW�WR�H[SHULPHQWDO�GDWD

� membrane potential trace from the model qualitatively matches in vivo patterns 
recorded from cortical neurons

experimental data model

in vitro�UHFRUGLQJV��3ROVN\�HW�DO��������

Conclusions

� active dendrites can act as optimal estimators for multiple presynaptic spike trains

� nonlinear dendritic tree is necessary even if the computation is linear

� positive correlations imply sublinear interactions, whereas synchronous state switches 
cause superlinear effects
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Figure 2: a. Recall performance for a single module memory system. Note difference in y-scales.
b. Average recollection error comparison for the single and dual memory system. Black lines mark
control performance, when ignoring the information from the synaptic weights.

Intuitively, one can see that relying on the prior over t is similar to assuming t fixed to a value close
to the mean of this prior. When the pattern that was actually presented is older than this estimate, the
resulting memory signal is weaker than expected, suggesting that the initial pattern was very sparse
(since a pair of inactive elements does not induce any synaptic changes according to our learning
rule). Still, when averaging the performance over patterns of all ages, distributed according to the
prior for t, the average error should be smaller than the control.

One warning sign is that average performance is actually worse than trivial for certain learning rule
parameters. A possible interpretation is that the sampling procedure used for inference does not work
in certain cases. Since Gibbs samplers are known to mix poorly when the shape of the posterior
is complex (with strong correlations, as in frustrated Ising models), perhaps our neural dynamics
cannot sample the desired distribution effectively in certain cases. With more complex synaptic
dynamics (e.g. deeper cascades) it works reasonably well (data not shown), probably because the
posterior is smoother and hence easier to sample from.

We confirmed this hypothesis by implementing a more sophisticated sampling procedure using tem-
pered transitions [10] (details in supplementary text). Indeed, when using this more powerful sam-
pling procedure, performance becomes significantly better than control, even for the cases where
Gibbs sampling fails (Fig. 2b). Unfortunately, there has yet to be a convincing suggestion as to how
tempering dynamics can be represented neurally since, for example, they require a global acceptance
decision to be taken at the end of each temperature cycle.

4 A dual memory system

An alternative to implicitly marginalizing over the age of the pattern throughout the inference pro-
cess is to estimate it at the same time as performing recollection. This suggests the use of dual
modules that together estimate the joint posterior P (x, t|˜x,W), with sampling proceeding in a
loop: the familiarity module generates a sample from the posterior over the age of the currently esti-
mated pattern, P(t|x,

˜

x,W); and the recollection module uses this estimated age to compute a new
sample from the distribution over possible stored patterns given the age, P (x|˜x,W, t) (Fig. 3a).

The module that computes familiarity can also be seen as a palimpsest, with each pattern overlaying,
and being overlaid by, its predecessors and successors. Formally, it needs to compute the probability
P(t|x,

˜

x,W), as the system continues to implement a Gibbs sampler with t as an additional dimen-
sion. As a separate module, the neural network estimating familiarity cannot however access the
weights W of the recollection module. A biologically plausible approximation is to assume that
the familiarity module uses a separate set of weights, which we call W

fam. Also, it is clear from
Fig. 1b that t is independent of ˜

x conditioned on x, thus the conditioning on ˜

x can be dropped when
computing the posterior over t, that is, external input need only feed directly into the recollection
but not the familiarity module (Fig. 3a).
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goal of optimal recall: represent distribution over patterns given 
information in the weights and recall cue
 (Sommer Dayan 1998; Lengyel et al 2005) 

- sampling-based representation of the full posterior over 
  patterns 

- alternative representations possible (mean-field)

- all-to-all connectivity (can be relaxed)
- recurrent network of excitatory neurons

- binary patterns
- recall cue = noisy version of original pattern
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take into account synaptic correlation by approximating the evidence from the weight by a 
weights with a Boltzmann distribution (max entropy model given first 2 moments):

revised expression for recurrent input:
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- familiarity = pattern age; can be relaxed

- benefits not restricted to sampling
  based representation 

- extended ensemble method (Iba 2001)
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simple model illustrates well the main points of the theory
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- the hidden state changes the parameters of the linear Gaussian process
��DVVXPHG�GHQVLW\�ÀOWHULQJ: the conditional posteriors                     are approximated 
  with a multivariate Gaussian in each time step
��ZH�ÀWWHG�WKH�PRGHO�WR�in vitro recordings from cortical neurons 

in vivo�SDLUHG�UHFRUGLQJV��*HQWHW�HW�DO�������� membrane potential trace sampled from the model after 
ÀWWLQJ�LW�WR�H[SHULPHQWDO�GDWD

� membrane potential trace from the model qualitatively matches in vivo patterns 
recorded from cortical neurons

experimental data model
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Conclusions

� active dendrites can act as optimal estimators for multiple presynaptic spike trains

� nonlinear dendritic tree is necessary even if the computation is linear

� positive correlations imply sublinear interactions, whereas synchronous state switches 
cause superlinear effects
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SYNAPTIC PLASTICITY
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Synapses are computational devices that not only transmit action 
potential-encoded information, but also transform it. Neuronal 
information is often encoded by bursts or trains of action potentials. 
Synapses process such action potential bursts or trains in a synapse-
specific manner that involves use-dependent changes in 
neurotransmitter release during the burst or train (referred to as 
short-term plasticity). In addition, synapses experience use-
dependent long-term changes in synaptic transmission that adjust 
the “gain” of a synapse, and operate either pre- and/or 
postsynaptically (referred to as long-term plasticity)

Südhof, 2012
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xim characterizing the ith neuron
in the mth memory trace. Here, we treat xim as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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Supplementary Figure S1. Generative model for presynaptic membrane potential fluctuations
and spike generation. (a) Graphical model for the case with constant resting membrane potential.
The membrane potential ut follows an Ornstein-Uhlenbeck (OU) process around a constant
resting potential urest. A spike is elicited at time t (st = 1) with probability g(ut) �t. See
Eqs 6-7 of the main paper. (b) Graphical model for the case with changing resting membrane
potential. The resting potential urest

t (see Eq. S1) can randomly switch between a “down” and
an “up” state. (c) Instantaneous firing rate g(u) as a function of the membrane potential u for
di⇥erent values of the spiking determinism parameter � (��1 = 3 mV – solid line, 10 mV –
dot-dashed line, 1 mV – dotted line) with g0 set such that g(�60 mV) = 10 Hz.
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Supplementary Figure S1. Generative model for presynaptic membrane potential fluctuations
and spike generation. (a) Graphical model for the case with constant resting membrane potential.
The membrane potential ut follows an Ornstein-Uhlenbeck (OU) process around a constant
resting potential urest. A spike is elicited at time t (st = 1) with probability g(ut) �t. See
Eqs 6-7 of the main paper. (b) Graphical model for the case with changing resting membrane
potential. The resting potential urest

t (see Eq. S1) can randomly switch between a “down” and
an “up” state. (c) Instantaneous firing rate g(u) as a function of the membrane potential u for
di⇥erent values of the spiking determinism parameter � (��1 = 3 mV – solid line, 10 mV –
dot-dashed line, 1 mV – dotted line) with g0 set such that g(�60 mV) = 10 Hz.
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MODEL OF PRESYNAPTIC DYNAMICS
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INFERRING THE MEMBRANE POTENTIAL

27

posterior distribution:

u1 . . . ut−1 ut

s1 . . . st−1 st

p(ut|s1...t) � p(st|ut)
�

p(ut|ut�1) p(ut�1| s1...t�1) dut�1

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel
http://www.neuroinf.pl/accn
http://www.neuroinf.pl/accn


Máté Lengyel  |  Computational modelling of synaptic function http://www.eng.cam.ac.uk/~m.lengyelMPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

INFERRING THE MEMBRANE POTENTIAL

27

posterior distribution:

u1 . . . ut−1 ut

s1 . . . st−1 st

p(ut|s1...t) � p(st|ut)
�

p(ut|ut�1) p(ut�1| s1...t�1) dut�1

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel
http://www.neuroinf.pl/accn
http://www.neuroinf.pl/accn


Máté Lengyel  |  Computational modelling of synaptic function http://www.eng.cam.ac.uk/~m.lengyelMPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

INFERRING THE MEMBRANE POTENTIAL

27

posterior distribution:

u1 . . . ut−1 ut

s1 . . . st−1 st

p(ut|s1...t) � p(st|ut)
�

p(ut|ut�1) p(ut�1| s1...t�1) dut�1

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel
http://www.neuroinf.pl/accn
http://www.neuroinf.pl/accn


Máté Lengyel  |  Computational modelling of synaptic function http://www.eng.cam.ac.uk/~m.lengyelMPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

INFERRING THE MEMBRANE POTENTIAL

27

posterior distribution:

u1 . . . ut−1 ut

s1 . . . st−1 st

p(ut|s1...t) � p(st|ut)
�

p(ut|ut�1) p(ut�1| s1...t�1) dut�1

| {z }
N (ut|µt,�2

t )

| {z }
N (ut�1|µt�1,�2

t�1)

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel
http://www.neuroinf.pl/accn
http://www.neuroinf.pl/accn


Máté Lengyel  |  Computational modelling of synaptic function http://www.eng.cam.ac.uk/~m.lengyelMPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

⌅̇2 = �2⇤(⌅2 � ⌅2
OU)� ⇥(t)�2⌅4

DYNAMICS OF THE OPTIMAL ESTIMATOR

28

0 20 40 60 80 100
−1

0

1

time [ms]

µ 
[m

V
]

0 20 40 60 80 100
0

0.2
0.4
0.6

time [ms]

σ
2  [m

V
2 ] 

0 20 40 60 80 100
−1

0

1

time [ms]

µ 
[m

V
]

0 20 40 60 80 100
0

0.2
0.4
0.6

time [ms]

σ
2  [m

V
2 ] 

�(t) = �g(u)⇥u|µ(t),⇥2(t)µ̇ = �⇤(µ� ur) + �⇧2(S(t)� ⇥(t))

mean posterior firing ratepresyn. spike train

spike

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel
http://www.neuroinf.pl/accn
http://www.neuroinf.pl/accn


Máté Lengyel  |  Computational modelling of synaptic function http://www.eng.cam.ac.uk/~m.lengyelMPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

⌅̇2 = �2⇤(⌅2 � ⌅2
OU)� ⇥(t)�2⌅4

DYNAMICS OF THE OPTIMAL ESTIMATOR

28

0 20 40 60 80 100
−1

0

1

time [ms]

µ 
[m

V
]

0 20 40 60 80 100
0

0.2
0.4
0.6

time [ms]

σ
2  [m

V
2 ] 

0 20 40 60 80 100
−1

0

1

time [ms]

µ 
[m

V
]

0 20 40 60 80 100
0

0.2
0.4
0.6

time [ms]

σ
2  [m

V
2 ] 

�(t) = �g(u)⇥u|µ(t),⇥2(t)µ̇ = �⇤(µ� ur) + �⇧2(S(t)� ⇥(t))

mean posterior firing ratepresyn. spike train

spike

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel
http://www.neuroinf.pl/accn
http://www.neuroinf.pl/accn


Máté Lengyel  |  Computational modelling of synaptic function http://www.eng.cam.ac.uk/~m.lengyelMPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

⌅̇2 = �2⇤(⌅2 � ⌅2
OU)� ⇥(t)�2⌅4

DYNAMICS OF THE OPTIMAL ESTIMATOR

28

0 20 40 60 80 100
−1

0

1

time [ms]

µ 
[m

V
]

0 20 40 60 80 100
0

0.2
0.4
0.6

time [ms]

σ
2  [m

V
2 ] 0 20 40 60 80 100

−1

0

1

time [ms]

µ 
[m

V
]

0 20 40 60 80 100
0

0.2
0.4
0.6

time [ms]

σ
2  [m

V
2 ] 

�(t) = �g(u)⇥u|µ(t),⇥2(t)µ̇ = �⇤(µ� ur) + �⇧2(S(t)� ⇥(t))

mean posterior firing ratepresyn. spike train

spike spike

http://www.eng.cam.ac.uk/~m.lengyel
http://www.eng.cam.ac.uk/~m.lengyel
http://www.neuroinf.pl/accn
http://www.neuroinf.pl/accn


Máté Lengyel  |  Computational modelling of synaptic function http://www.eng.cam.ac.uk/~m.lengyelMPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

RELATION TO SHORT-TERM PLASTICITY
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Figure 1. Estimating the presynaptic membrane potential from spiking information. (a) Sample
trace (black) of the presynaptic membrane potential generated from an Ornstein-Uhlenbeck
process. When the membrane potential exceeds a soft threshold, action potentials (vertical black
lines) are generated. The optimal estimator of the presynaptic membrane potential (red line:
mean estimate ût, red shading: one standard deviation �t) closely matches an optimally tuned
canonical model of short-term plasticity11 (blue). Inset shows a magnified section. (b) EPSP
amplitude of the optimal estimator (red) and of the canonical model of short-term plasticity
(blue) as a function of the estimator uncertainty �2. Note that EPSP amlitudes in the biophysical
model tend to be smaller than those in the optimal estimator which is compensating for a
somewhat slower decay in the biophysical model (see (a) inset). (c) The dynamics of the scaled
uncertainty �2/�2

max (red) closely match the resource variable xt of the canonical model of STP
(blue), �2.
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Figure 2. The optimal estimator reproduces experimentally observed patterns of synaptic de-
pression and facilitation. (a) Synaptic depression in cerebellar climbing fibers (circles, redrawn
from Ref. 7) and in the model (solid line), measured as the ratio of the amplitude of the eighth
and first EPSP as a function of the stimulation rate during a train of eight presynaptic spikes.
(b) Synaptic facilitation in hippocampal Schä�er collaterals (circles, redrawn from Ref. 41) and
in the model (solid line), measured as the ratio of the amplitude of the second and first EPSP
as a function of the interval between a pair of presynaptic spikes.
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Figure 1: Neuronal model A red: sample trace of the membrane potential. vertical red line
denotes the spike timing. Dot-dahsed line: Evolution of the resting membrane potential urest(t).
Ornstein-Uhlenbeck parameters: standard deviation: ⇤OU = 2 [mV], time constant: ⇥�1 = 20
ms, resting values: u� = �65 mV, u+ = �55 mV, switching rate: � = 2 Hz B. Membrane
potential distribution.
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Figure 3. Model of presynaptic membrane potential dynamics with “up” and “down” states. (a)
Sample trace of sub-threshold membrane fluctuations (ut, solid black trace) with action potential
timings (vertical lines), and the underlying changes in resting membrane potential (urest

t , dash-
dotted line). (b) Stationary membrane potential distribution is bimodal about the two possible
values of the resting membrane potential.
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Supplementary Figures and Legends
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Supplementary Figure S1. Generative model for presynaptic membrane potential fluctuations
and spike generation. (a) Graphical model for the case with constant resting membrane potential.
The membrane potential ut follows an Ornstein-Uhlenbeck (OU) process around a constant
resting potential urest. A spike is elicited at time t (st = 1) with probability g(ut) �t. See
Eqs 6-7 of the main paper. (b) Graphical model for the case with changing resting membrane
potential. The resting potential urest

t (see Eq. S1) can randomly switch between a “down” and
an “up” state. (c) Instantaneous firing rate g(u) as a function of the membrane potential u for
di⇥erent values of the spiking determinism parameter � (��1 = 3 mV – solid line, 10 mV –
dot-dashed line, 1 mV – dotted line) with g0 set such that g(�60 mV) = 10 Hz.
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Supplementary Note

1 Estimation under the switching Ornstein–Uhlenbeck process

1.1 Generative process

For convenience, recall here the description of the generative model under the switching Ornstein–
Uhlenbeck (OU) process. In such a process, the resting membrane potential urest

t is not fixed
but randomly switches between two levels, u+ ans u�, corresponding to “up” and “down” states
(Supplementary Fig. S1b)

P
�
urest

t |urest
t�1

⇥
=

⇧
��⌥

��⌃

1� ���t if urest
t = u+ and urest

t�1 = u+

���t if urest
t = u� and urest

t�1 = u+

1� �+�t if urest
t = u� and urest

t�1 = u�

�+�t if urest
t = u+ and urest

t�1 = u�

(S1)

where �� and �+ are the rates of switching to the “down” and “up” states, respectively. The
presynaptic membrane potential evolves as an Ornstein-Uhlenbeck (OU) process around the
resting potential urest

t which is now time-dependent:

P
�
ut|ut�1, u

rest
t

⇥
= N
⇤
ut; ut�1 +

1
⇧

�
urest

t � ut�1

⇥
�t, ⌅2

W�t

⌅
(S2)

Spike generation is described by the same rule as in the non-switching case. See Eqs. 5-7 of the
main paper.

1.2 Optimal estimator

The optimal estimator is given by the following filtering equation:

P
�
ut, u

rest
t |s1:t

⇥
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t |urest
t�1

⇥
P
�
ut�1, u

rest
t�1|s1:t�1

⇥
dut�1

(S3)

We are primarirly interested in the posterior over the membrane potential. This can be obtained
by marginalising Equation S3:

P(ut|s1:t) =
 

urest
t

P
�
ut, u

rest
t |s1:t

⇥
= (1� ⇤t) p�t (ut) + ⇤t p+

t (ut) (S4)

where
⇤t = P
�
urest

t = u+|s1:t

⇥
(S5)

is the estimated probability of the resting membrane potential being in its “up” state (or the
mixture ratio), and

p�t (ut) = P
�
ut|urest

t = u�, s1:t

⇥
(S6)

p+
t (ut) = P

�
ut|urest

t = u+, s1:t

⇥
(S7)

express the posterior distribution of ut assuming that urest is in its “down” or “up” state, re-
spectively.

The mean of the posterior over the presynaptic membrane potential can be written as:

ût = (1� ⇤t) µ�t + ⇤t µ+
t (S8)

where

µ�t =
⌦ ⇥

�⇥
ut p�t (ut) dut (S9)

µ+
t =

⌦ ⇥

�⇥
ut p+

t (ut) dut (S10)

1

Pfister et al. Synapses as optimal estimators

Supplementary Note

1 Estimation under the switching Ornstein–Uhlenbeck process

1.1 Generative process

For convenience, recall here the description of the generative model under the switching Ornstein–
Uhlenbeck (OU) process. In such a process, the resting membrane potential urest

t is not fixed
but randomly switches between two levels, u+ ans u�, corresponding to “up” and “down” states
(Supplementary Fig. S1b)

P
�
urest

t |urest
t�1

⇥
=

⇧
��⌥

��⌃

1� ���t if urest
t = u+ and urest

t�1 = u+

���t if urest
t = u� and urest

t�1 = u+

1� �+�t if urest
t = u� and urest

t�1 = u�

�+�t if urest
t = u+ and urest

t�1 = u�

(S1)

where �� and �+ are the rates of switching to the “down” and “up” states, respectively. The
presynaptic membrane potential evolves as an Ornstein-Uhlenbeck (OU) process around the
resting potential urest

t which is now time-dependent:

P
�
ut|ut�1, u

rest
t

⇥
= N
⇤
ut; ut�1 +

1
⇧

�
urest

t � ut�1

⇥
�t, ⌅2

W�t

⌅
(S2)

Spike generation is described by the same rule as in the non-switching case. See Eqs. 5-7 of the
main paper.

1.2 Optimal estimator

The optimal estimator is given by the following filtering equation:
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⇥
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⇥
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(S3)

We are primarirly interested in the posterior over the membrane potential. This can be obtained
by marginalising Equation S3:

P(ut|s1:t) =
 

urest
t

P
�
ut, u

rest
t |s1:t

⇥
= (1� ⇤t) p�t (ut) + ⇤t p+

t (ut) (S4)

where
⇤t = P
�
urest

t = u+|s1:t

⇥
(S5)

is the estimated probability of the resting membrane potential being in its “up” state (or the
mixture ratio), and

p�t (ut) = P
�
ut|urest

t = u�, s1:t

⇥
(S6)

p+
t (ut) = P

�
ut|urest

t = u+, s1:t

⇥
(S7)

express the posterior distribution of ut assuming that urest is in its “down” or “up” state, re-
spectively.

The mean of the posterior over the presynaptic membrane potential can be written as:

ût = (1� ⇤t) µ�t + ⇤t µ+
t (S8)

where

µ�t =
⌦ ⇥

�⇥
ut p�t (ut) dut (S9)

µ+
t =

⌦ ⇥

�⇥
ut p+

t (ut) dut (S10)
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Figure R1: Two representative samples, (a) and (b), from in vivo recordings of layer 2/3
pyramidal cells of the (awake) rat barrel cortex (top plots, data from Ref. 7, courtesy
of Carl Petersen and Gentet Luc), and from our switching model (bottom plots). No
exhaustive parameter fitting of the model was attempted, and the same parameters were
used in (a) and (b).

The reviewer is definitely correct that this is a distinct simplification, albeit one
that is still capable of capturing many of the qualitative characteristics of the
membrane potential fluctuations of real neurons – for illustration, we show an
example in Fig. R1. One of the key points of our suggestion is that it is straight-
forward to understand how statistically richer processes governing membrane
potential dynamics should relate to refined models of the details of STP – we see
these as enhancing, rather than invalidating, our currently simple approach.

4. The key idea is that the dynamics of the estimation problem take on the same
form as the dynamics of a short-term synaptic plasticity model. It would be
worth addressing the fitting of the parameters of the plasticity model to the esti-
mation model, the robustness of these fits, and commenting on the extent to which
the fitted parameters are biologically plausible. As these parameters differ for
different neuron types, what does this imply about inferred priors over natural
statistical variation in different circuit or brain areas?

Thanks for this excellent idea. We followed this approach by fitting our optimal
estimator to STP data recorded in two different brain areas (climbing fibers in the
cerebellum8, and Schäffer collaterals in the hippocampus9). We then used these
fits to predict the membrane potential dynamics of the corresponding presynap-
tic cells (inferior olive neurons and hippocampal pyramidal cells, respectively).
The results are shown in Supplementary Figure S2 together with published in
vivo recordings from the same neuronal types10,11. While the simulations cer-
tainly lack many of the quantitative details of the real data, we regard them in
general as a confirmation of our theory, since the data we used to fit our model
(relative peak magnitudes of EPSPs in the postsynaptic cell) are (1) extremely

4

model

experiment
Gentet et al, 2010
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Figure 4. Estimating the presynaptic membrane potential when the resting membrane potential
randomly switches between two di⇥erent values. (a) Presynaptic subthreshold membrane poten-
tial with action potentials (black) (as in Fig. 3), its optimal mean estimate (û, red line) with
the associated standard deviation (⇥, red shading), and the postsynaptic membrane potential
in a model synapse11 with optimally tuned short-term plasticity (blue line). Inset: the (scaled)
optimal estimator (red) strongly depends on the estimated probability � of being in the“up”
state. (b) EPSP amplitude in the optimal estimator depends on its uncertainty (x-axis, ⇥2), and
the change in the estimated probability that the presynaptic cell is in its “up” state (color code,
��). (c) The estimated probability that the presynaptic cell is in its“up” state � (red) tracks
the state of the presynaptic neuron (black) as it randomly switches between its“up” and “down”
states. (d) EPSP magnitudes in the optimal estimator against EPSP magnitudes in the model
synapse.
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Pfister et al, Nat Neurosci, 2010
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to switch between two possible values, corresponding to an up and a 
down state (Fig. 2, Supplementary Note and Supplementary Fig. 2).

In this extended model, the true current value of ut
rest is unknown to 

the postsynaptic cell, as with ut. Thus, the full solution to the estima-
tion problem is a posterior distribution expressing joint uncertainty 
about these two quantities (Supplementary Note). In this case, the 
estimated probability that ut

rest is in its up state also reflects recent 
spikes and influences ût ( t; Fig. 2a–c). Observing a spike when the 
current estimate of the membrane potential is compatible with the 
presynaptic neuron being in its down state increases this probability 
somewhat. Observing a second spike in a short time window, pro-
viding substantial extra evidence for this up state, will thus cause a 
larger increment in ût (Fig. 2a and Supplementary Fig. 3). EPSPs 
in the facilitating biophysical STP model and in actual facilitating 
synapses in a paired-pulse protocol39 (Figs. 2d and 3b) showed the 
same effect.

Match between STP and the dynamics of the presynaptic cell
Our theory requires the synaptic estimator to be matched to the sta-
tistical properties of the presynaptic membrane potential fluctuations 
that it needs to estimate. Thus, fitting the optimal estimator to experi-
mentally measured STP data (Fig. 3a,b) allowed us to predict, with-
out further parameter fitting, properties of the membrane potential 
dynamics that the corresponding presynaptic cell type should exhibit. 
Testing these predictions is challenging because they are about the 
natural statistics of membrane potential fluctuations and thus require 
in vivo intracellular recordings, preferably from behaving rather than 
anaesthetized animals.

Nevertheless, starting from our fits to data about synaptic depres-
sion and facilitation for cerebellar climbing fibers (Fig. 3a) and hippo-
campal Schäffer collateral inputs (Fig. 3b), we predicted membrane 
potential fluctuations in inferior olive neurons (Fig. 3c) and hippo-
campal pyramidal cells (Fig. 3d), respectively, that were in broad 
qualitative agreement with those found in vivo in these cell types38,40 
(Fig. 3e,f). Note that the absence and presence of marked up and 
down states in these two cell types, respectively, is predicted by our 
theory directly from the absence and presence of facilitation in their 
corresponding efferent synapses.

The advantage of STP
To quantify the advantage that STP brings to synapses for tracking the 
presynaptic membrane potential, we measured how well ût or its bio-
physical analog vt performed on the estimation task in terms of the time-
averaged squared error between ut and its estimate (Online Methods). 
We compared the optimal estimator of the presynaptic membrane poten-
tial (Fig. 4a) with the postsynaptic membrane potential occasioned by 
a synapse undergoing STP. These two traces were very close. Notably, 
a static synapse without STP, whose fixed efficacy is still optimized for 
the same estimation task, performed substantially less well.

Our account of synaptic dynamics assumes no transmission failure 
or, equivalently, a large number of release sites between the pre- and 
postsynaptic cells. Therefore, we also ran simulations with stochastic 
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Figure 2 Estimating the presynaptic membrane potential when the resting membrane potential randomly switches between two different values.  
(a) Presynaptic subthreshold membrane potential with action potentials (black), its optimal mean estimate (û, red line) with the associated s.d.  
( , red shading) and the postsynaptic membrane potential in a model synapse11 with optimally tuned short-term plasticity (blue line). Inset, the (scaled) 
optimal estimator (red solid line) strongly depends on the estimated probability  of being in the up state (red dashed line). (b) EPSP amplitude in the 
optimal estimator depends on its uncertainty (horizontal axis, 2) and the change in the estimated probability that the presynaptic cell is in its up state 
(color code, ). (c) The estimated probability that the presynaptic cell is in its up state  (red) tracks the state of the presynaptic neuron (black) as it 
randomly switches between its up and down states. (d) EPSP magnitudes in the optimal estimator against EPSP magnitudes in the model synapse.
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Figure 3 The optimal estimator reproduces experimentally observed 
patterns of synaptic depression and facilitation. (a) Synaptic depression 
in cerebellar climbing fibers (circles: mean  s.e.m.; redrawn from ref. 6) 
and in the model (solid line), measured as the ratio of the amplitude of 
the eighth and first EPSP as a function of the stimulation rate during a 
train of eight presynaptic spikes. (b) Synaptic facilitation in hippocampal 
Schäffer collaterals (circles, mean  s.e.m.; redrawn from ref. 39) and in 
the model (solid line), measured as the ratio of the amplitude of the second 
and first EPSP as a function of the interval between a pair of presynaptic 
spikes. Shading in a and b shows the robustness of the fits (Online 
Methods): model predictions when best-fit parameters are perturbed by 
5% (dark gray) or 10% (light gray). (c,d) Predictions of the model for the 
dynamics of inferior olive neurons (c) and hippocampal pyramidal neurons (d). 
Sample traces were generated with parameters fitted to the data about STP 
in cerebellar climbing fibers (shown in a) and Schäffer collaterals (shown 
in b). (e,f) In vivo intracellular recordings from inferior olive neurons of the 
(anesthetized) rat (e, reproduced from ref. 40) and hippocampal pyramidal 
cells of the behaving rat (f, reproduced from ref. 38).
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to switch between two possible values, corresponding to an up and a 
down state (Fig. 2, Supplementary Note and Supplementary Fig. 2).

In this extended model, the true current value of ut
rest is unknown to 

the postsynaptic cell, as with ut. Thus, the full solution to the estima-
tion problem is a posterior distribution expressing joint uncertainty 
about these two quantities (Supplementary Note). In this case, the 
estimated probability that ut

rest is in its up state also reflects recent 
spikes and influences ût ( t; Fig. 2a–c). Observing a spike when the 
current estimate of the membrane potential is compatible with the 
presynaptic neuron being in its down state increases this probability 
somewhat. Observing a second spike in a short time window, pro-
viding substantial extra evidence for this up state, will thus cause a 
larger increment in ût (Fig. 2a and Supplementary Fig. 3). EPSPs 
in the facilitating biophysical STP model and in actual facilitating 
synapses in a paired-pulse protocol39 (Figs. 2d and 3b) showed the 
same effect.

Match between STP and the dynamics of the presynaptic cell
Our theory requires the synaptic estimator to be matched to the sta-
tistical properties of the presynaptic membrane potential fluctuations 
that it needs to estimate. Thus, fitting the optimal estimator to experi-
mentally measured STP data (Fig. 3a,b) allowed us to predict, with-
out further parameter fitting, properties of the membrane potential 
dynamics that the corresponding presynaptic cell type should exhibit. 
Testing these predictions is challenging because they are about the 
natural statistics of membrane potential fluctuations and thus require 
in vivo intracellular recordings, preferably from behaving rather than 
anaesthetized animals.

Nevertheless, starting from our fits to data about synaptic depres-
sion and facilitation for cerebellar climbing fibers (Fig. 3a) and hippo-
campal Schäffer collateral inputs (Fig. 3b), we predicted membrane 
potential fluctuations in inferior olive neurons (Fig. 3c) and hippo-
campal pyramidal cells (Fig. 3d), respectively, that were in broad 
qualitative agreement with those found in vivo in these cell types38,40 
(Fig. 3e,f). Note that the absence and presence of marked up and 
down states in these two cell types, respectively, is predicted by our 
theory directly from the absence and presence of facilitation in their 
corresponding efferent synapses.

The advantage of STP
To quantify the advantage that STP brings to synapses for tracking the 
presynaptic membrane potential, we measured how well ût or its bio-
physical analog vt performed on the estimation task in terms of the time-
averaged squared error between ut and its estimate (Online Methods). 
We compared the optimal estimator of the presynaptic membrane poten-
tial (Fig. 4a) with the postsynaptic membrane potential occasioned by 
a synapse undergoing STP. These two traces were very close. Notably, 
a static synapse without STP, whose fixed efficacy is still optimized for 
the same estimation task, performed substantially less well.

Our account of synaptic dynamics assumes no transmission failure 
or, equivalently, a large number of release sites between the pre- and 
postsynaptic cells. Therefore, we also ran simulations with stochastic 
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Figure 2 Estimating the presynaptic membrane potential when the resting membrane potential randomly switches between two different values.  
(a) Presynaptic subthreshold membrane potential with action potentials (black), its optimal mean estimate (û, red line) with the associated s.d.  
( , red shading) and the postsynaptic membrane potential in a model synapse11 with optimally tuned short-term plasticity (blue line). Inset, the (scaled) 
optimal estimator (red solid line) strongly depends on the estimated probability  of being in the up state (red dashed line). (b) EPSP amplitude in the 
optimal estimator depends on its uncertainty (horizontal axis, 2) and the change in the estimated probability that the presynaptic cell is in its up state 
(color code, ). (c) The estimated probability that the presynaptic cell is in its up state  (red) tracks the state of the presynaptic neuron (black) as it 
randomly switches between its up and down states. (d) EPSP magnitudes in the optimal estimator against EPSP magnitudes in the model synapse.
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Figure 3 The optimal estimator reproduces experimentally observed 
patterns of synaptic depression and facilitation. (a) Synaptic depression 
in cerebellar climbing fibers (circles: mean  s.e.m.; redrawn from ref. 6) 
and in the model (solid line), measured as the ratio of the amplitude of 
the eighth and first EPSP as a function of the stimulation rate during a 
train of eight presynaptic spikes. (b) Synaptic facilitation in hippocampal 
Schäffer collaterals (circles, mean  s.e.m.; redrawn from ref. 39) and in 
the model (solid line), measured as the ratio of the amplitude of the second 
and first EPSP as a function of the interval between a pair of presynaptic 
spikes. Shading in a and b shows the robustness of the fits (Online 
Methods): model predictions when best-fit parameters are perturbed by 
5% (dark gray) or 10% (light gray). (c,d) Predictions of the model for the 
dynamics of inferior olive neurons (c) and hippocampal pyramidal neurons (d). 
Sample traces were generated with parameters fitted to the data about STP 
in cerebellar climbing fibers (shown in a) and Schäffer collaterals (shown 
in b). (e,f) In vivo intracellular recordings from inferior olive neurons of the 
(anesthetized) rat (e, reproduced from ref. 40) and hippocampal pyramidal 
cells of the behaving rat (f, reproduced from ref. 38).
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to switch between two possible values, corresponding to an up and a 
down state (Fig. 2, Supplementary Note and Supplementary Fig. 2).

In this extended model, the true current value of ut
rest is unknown to 

the postsynaptic cell, as with ut. Thus, the full solution to the estima-
tion problem is a posterior distribution expressing joint uncertainty 
about these two quantities (Supplementary Note). In this case, the 
estimated probability that ut

rest is in its up state also reflects recent 
spikes and influences ût ( t; Fig. 2a–c). Observing a spike when the 
current estimate of the membrane potential is compatible with the 
presynaptic neuron being in its down state increases this probability 
somewhat. Observing a second spike in a short time window, pro-
viding substantial extra evidence for this up state, will thus cause a 
larger increment in ût (Fig. 2a and Supplementary Fig. 3). EPSPs 
in the facilitating biophysical STP model and in actual facilitating 
synapses in a paired-pulse protocol39 (Figs. 2d and 3b) showed the 
same effect.

Match between STP and the dynamics of the presynaptic cell
Our theory requires the synaptic estimator to be matched to the sta-
tistical properties of the presynaptic membrane potential fluctuations 
that it needs to estimate. Thus, fitting the optimal estimator to experi-
mentally measured STP data (Fig. 3a,b) allowed us to predict, with-
out further parameter fitting, properties of the membrane potential 
dynamics that the corresponding presynaptic cell type should exhibit. 
Testing these predictions is challenging because they are about the 
natural statistics of membrane potential fluctuations and thus require 
in vivo intracellular recordings, preferably from behaving rather than 
anaesthetized animals.

Nevertheless, starting from our fits to data about synaptic depres-
sion and facilitation for cerebellar climbing fibers (Fig. 3a) and hippo-
campal Schäffer collateral inputs (Fig. 3b), we predicted membrane 
potential fluctuations in inferior olive neurons (Fig. 3c) and hippo-
campal pyramidal cells (Fig. 3d), respectively, that were in broad 
qualitative agreement with those found in vivo in these cell types38,40 
(Fig. 3e,f). Note that the absence and presence of marked up and 
down states in these two cell types, respectively, is predicted by our 
theory directly from the absence and presence of facilitation in their 
corresponding efferent synapses.

The advantage of STP
To quantify the advantage that STP brings to synapses for tracking the 
presynaptic membrane potential, we measured how well ût or its bio-
physical analog vt performed on the estimation task in terms of the time-
averaged squared error between ut and its estimate (Online Methods). 
We compared the optimal estimator of the presynaptic membrane poten-
tial (Fig. 4a) with the postsynaptic membrane potential occasioned by 
a synapse undergoing STP. These two traces were very close. Notably, 
a static synapse without STP, whose fixed efficacy is still optimized for 
the same estimation task, performed substantially less well.

Our account of synaptic dynamics assumes no transmission failure 
or, equivalently, a large number of release sites between the pre- and 
postsynaptic cells. Therefore, we also ran simulations with stochastic 
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Figure 2 Estimating the presynaptic membrane potential when the resting membrane potential randomly switches between two different values.  
(a) Presynaptic subthreshold membrane potential with action potentials (black), its optimal mean estimate (û, red line) with the associated s.d.  
( , red shading) and the postsynaptic membrane potential in a model synapse11 with optimally tuned short-term plasticity (blue line). Inset, the (scaled) 
optimal estimator (red solid line) strongly depends on the estimated probability  of being in the up state (red dashed line). (b) EPSP amplitude in the 
optimal estimator depends on its uncertainty (horizontal axis, 2) and the change in the estimated probability that the presynaptic cell is in its up state 
(color code, ). (c) The estimated probability that the presynaptic cell is in its up state  (red) tracks the state of the presynaptic neuron (black) as it 
randomly switches between its up and down states. (d) EPSP magnitudes in the optimal estimator against EPSP magnitudes in the model synapse.
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Figure 3 The optimal estimator reproduces experimentally observed 
patterns of synaptic depression and facilitation. (a) Synaptic depression 
in cerebellar climbing fibers (circles: mean  s.e.m.; redrawn from ref. 6) 
and in the model (solid line), measured as the ratio of the amplitude of 
the eighth and first EPSP as a function of the stimulation rate during a 
train of eight presynaptic spikes. (b) Synaptic facilitation in hippocampal 
Schäffer collaterals (circles, mean  s.e.m.; redrawn from ref. 39) and in 
the model (solid line), measured as the ratio of the amplitude of the second 
and first EPSP as a function of the interval between a pair of presynaptic 
spikes. Shading in a and b shows the robustness of the fits (Online 
Methods): model predictions when best-fit parameters are perturbed by 
5% (dark gray) or 10% (light gray). (c,d) Predictions of the model for the 
dynamics of inferior olive neurons (c) and hippocampal pyramidal neurons (d). 
Sample traces were generated with parameters fitted to the data about STP 
in cerebellar climbing fibers (shown in a) and Schäffer collaterals (shown 
in b). (e,f) In vivo intracellular recordings from inferior olive neurons of the 
(anesthetized) rat (e, reproduced from ref. 40) and hippocampal pyramidal 
cells of the behaving rat (f, reproduced from ref. 38).
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to switch between two possible values, corresponding to an up and a 
down state (Fig. 2, Supplementary Note and Supplementary Fig. 2).

In this extended model, the true current value of ut
rest is unknown to 

the postsynaptic cell, as with ut. Thus, the full solution to the estima-
tion problem is a posterior distribution expressing joint uncertainty 
about these two quantities (Supplementary Note). In this case, the 
estimated probability that ut

rest is in its up state also reflects recent 
spikes and influences ût ( t; Fig. 2a–c). Observing a spike when the 
current estimate of the membrane potential is compatible with the 
presynaptic neuron being in its down state increases this probability 
somewhat. Observing a second spike in a short time window, pro-
viding substantial extra evidence for this up state, will thus cause a 
larger increment in ût (Fig. 2a and Supplementary Fig. 3). EPSPs 
in the facilitating biophysical STP model and in actual facilitating 
synapses in a paired-pulse protocol39 (Figs. 2d and 3b) showed the 
same effect.

Match between STP and the dynamics of the presynaptic cell
Our theory requires the synaptic estimator to be matched to the sta-
tistical properties of the presynaptic membrane potential fluctuations 
that it needs to estimate. Thus, fitting the optimal estimator to experi-
mentally measured STP data (Fig. 3a,b) allowed us to predict, with-
out further parameter fitting, properties of the membrane potential 
dynamics that the corresponding presynaptic cell type should exhibit. 
Testing these predictions is challenging because they are about the 
natural statistics of membrane potential fluctuations and thus require 
in vivo intracellular recordings, preferably from behaving rather than 
anaesthetized animals.

Nevertheless, starting from our fits to data about synaptic depres-
sion and facilitation for cerebellar climbing fibers (Fig. 3a) and hippo-
campal Schäffer collateral inputs (Fig. 3b), we predicted membrane 
potential fluctuations in inferior olive neurons (Fig. 3c) and hippo-
campal pyramidal cells (Fig. 3d), respectively, that were in broad 
qualitative agreement with those found in vivo in these cell types38,40 
(Fig. 3e,f). Note that the absence and presence of marked up and 
down states in these two cell types, respectively, is predicted by our 
theory directly from the absence and presence of facilitation in their 
corresponding efferent synapses.

The advantage of STP
To quantify the advantage that STP brings to synapses for tracking the 
presynaptic membrane potential, we measured how well ût or its bio-
physical analog vt performed on the estimation task in terms of the time-
averaged squared error between ut and its estimate (Online Methods). 
We compared the optimal estimator of the presynaptic membrane poten-
tial (Fig. 4a) with the postsynaptic membrane potential occasioned by 
a synapse undergoing STP. These two traces were very close. Notably, 
a static synapse without STP, whose fixed efficacy is still optimized for 
the same estimation task, performed substantially less well.

Our account of synaptic dynamics assumes no transmission failure 
or, equivalently, a large number of release sites between the pre- and 
postsynaptic cells. Therefore, we also ran simulations with stochastic 
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Figure 2 Estimating the presynaptic membrane potential when the resting membrane potential randomly switches between two different values.  
(a) Presynaptic subthreshold membrane potential with action potentials (black), its optimal mean estimate (û, red line) with the associated s.d.  
( , red shading) and the postsynaptic membrane potential in a model synapse11 with optimally tuned short-term plasticity (blue line). Inset, the (scaled) 
optimal estimator (red solid line) strongly depends on the estimated probability  of being in the up state (red dashed line). (b) EPSP amplitude in the 
optimal estimator depends on its uncertainty (horizontal axis, 2) and the change in the estimated probability that the presynaptic cell is in its up state 
(color code, ). (c) The estimated probability that the presynaptic cell is in its up state  (red) tracks the state of the presynaptic neuron (black) as it 
randomly switches between its up and down states. (d) EPSP magnitudes in the optimal estimator against EPSP magnitudes in the model synapse.
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Figure 3 The optimal estimator reproduces experimentally observed 
patterns of synaptic depression and facilitation. (a) Synaptic depression 
in cerebellar climbing fibers (circles: mean  s.e.m.; redrawn from ref. 6) 
and in the model (solid line), measured as the ratio of the amplitude of 
the eighth and first EPSP as a function of the stimulation rate during a 
train of eight presynaptic spikes. (b) Synaptic facilitation in hippocampal 
Schäffer collaterals (circles, mean  s.e.m.; redrawn from ref. 39) and in 
the model (solid line), measured as the ratio of the amplitude of the second 
and first EPSP as a function of the interval between a pair of presynaptic 
spikes. Shading in a and b shows the robustness of the fits (Online 
Methods): model predictions when best-fit parameters are perturbed by 
5% (dark gray) or 10% (light gray). (c,d) Predictions of the model for the 
dynamics of inferior olive neurons (c) and hippocampal pyramidal neurons (d). 
Sample traces were generated with parameters fitted to the data about STP 
in cerebellar climbing fibers (shown in a) and Schäffer collaterals (shown 
in b). (e,f) In vivo intracellular recordings from inferior olive neurons of the 
(anesthetized) rat (e, reproduced from ref. 40) and hippocampal pyramidal 
cells of the behaving rat (f, reproduced from ref. 38).
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to switch between two possible values, corresponding to an up and a 
down state (Fig. 2, Supplementary Note and Supplementary Fig. 2).

In this extended model, the true current value of ut
rest is unknown to 

the postsynaptic cell, as with ut. Thus, the full solution to the estima-
tion problem is a posterior distribution expressing joint uncertainty 
about these two quantities (Supplementary Note). In this case, the 
estimated probability that ut

rest is in its up state also reflects recent 
spikes and influences ût ( t; Fig. 2a–c). Observing a spike when the 
current estimate of the membrane potential is compatible with the 
presynaptic neuron being in its down state increases this probability 
somewhat. Observing a second spike in a short time window, pro-
viding substantial extra evidence for this up state, will thus cause a 
larger increment in ût (Fig. 2a and Supplementary Fig. 3). EPSPs 
in the facilitating biophysical STP model and in actual facilitating 
synapses in a paired-pulse protocol39 (Figs. 2d and 3b) showed the 
same effect.

Match between STP and the dynamics of the presynaptic cell
Our theory requires the synaptic estimator to be matched to the sta-
tistical properties of the presynaptic membrane potential fluctuations 
that it needs to estimate. Thus, fitting the optimal estimator to experi-
mentally measured STP data (Fig. 3a,b) allowed us to predict, with-
out further parameter fitting, properties of the membrane potential 
dynamics that the corresponding presynaptic cell type should exhibit. 
Testing these predictions is challenging because they are about the 
natural statistics of membrane potential fluctuations and thus require 
in vivo intracellular recordings, preferably from behaving rather than 
anaesthetized animals.

Nevertheless, starting from our fits to data about synaptic depres-
sion and facilitation for cerebellar climbing fibers (Fig. 3a) and hippo-
campal Schäffer collateral inputs (Fig. 3b), we predicted membrane 
potential fluctuations in inferior olive neurons (Fig. 3c) and hippo-
campal pyramidal cells (Fig. 3d), respectively, that were in broad 
qualitative agreement with those found in vivo in these cell types38,40 
(Fig. 3e,f). Note that the absence and presence of marked up and 
down states in these two cell types, respectively, is predicted by our 
theory directly from the absence and presence of facilitation in their 
corresponding efferent synapses.

The advantage of STP
To quantify the advantage that STP brings to synapses for tracking the 
presynaptic membrane potential, we measured how well ût or its bio-
physical analog vt performed on the estimation task in terms of the time-
averaged squared error between ut and its estimate (Online Methods). 
We compared the optimal estimator of the presynaptic membrane poten-
tial (Fig. 4a) with the postsynaptic membrane potential occasioned by 
a synapse undergoing STP. These two traces were very close. Notably, 
a static synapse without STP, whose fixed efficacy is still optimized for 
the same estimation task, performed substantially less well.

Our account of synaptic dynamics assumes no transmission failure 
or, equivalently, a large number of release sites between the pre- and 
postsynaptic cells. Therefore, we also ran simulations with stochastic 
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Figure 2 Estimating the presynaptic membrane potential when the resting membrane potential randomly switches between two different values.  
(a) Presynaptic subthreshold membrane potential with action potentials (black), its optimal mean estimate (û, red line) with the associated s.d.  
( , red shading) and the postsynaptic membrane potential in a model synapse11 with optimally tuned short-term plasticity (blue line). Inset, the (scaled) 
optimal estimator (red solid line) strongly depends on the estimated probability  of being in the up state (red dashed line). (b) EPSP amplitude in the 
optimal estimator depends on its uncertainty (horizontal axis, 2) and the change in the estimated probability that the presynaptic cell is in its up state 
(color code, ). (c) The estimated probability that the presynaptic cell is in its up state  (red) tracks the state of the presynaptic neuron (black) as it 
randomly switches between its up and down states. (d) EPSP magnitudes in the optimal estimator against EPSP magnitudes in the model synapse.
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Figure 3 The optimal estimator reproduces experimentally observed 
patterns of synaptic depression and facilitation. (a) Synaptic depression 
in cerebellar climbing fibers (circles: mean  s.e.m.; redrawn from ref. 6) 
and in the model (solid line), measured as the ratio of the amplitude of 
the eighth and first EPSP as a function of the stimulation rate during a 
train of eight presynaptic spikes. (b) Synaptic facilitation in hippocampal 
Schäffer collaterals (circles, mean  s.e.m.; redrawn from ref. 39) and in 
the model (solid line), measured as the ratio of the amplitude of the second 
and first EPSP as a function of the interval between a pair of presynaptic 
spikes. Shading in a and b shows the robustness of the fits (Online 
Methods): model predictions when best-fit parameters are perturbed by 
5% (dark gray) or 10% (light gray). (c,d) Predictions of the model for the 
dynamics of inferior olive neurons (c) and hippocampal pyramidal neurons (d). 
Sample traces were generated with parameters fitted to the data about STP 
in cerebellar climbing fibers (shown in a) and Schäffer collaterals (shown 
in b). (e,f) In vivo intracellular recordings from inferior olive neurons of the 
(anesthetized) rat (e, reproduced from ref. 40) and hippocampal pyramidal 
cells of the behaving rat (f, reproduced from ref. 38).
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to switch between two possible values, corresponding to an up and a 
down state (Fig. 2, Supplementary Note and Supplementary Fig. 2).

In this extended model, the true current value of ut
rest is unknown to 

the postsynaptic cell, as with ut. Thus, the full solution to the estima-
tion problem is a posterior distribution expressing joint uncertainty 
about these two quantities (Supplementary Note). In this case, the 
estimated probability that ut

rest is in its up state also reflects recent 
spikes and influences ût ( t; Fig. 2a–c). Observing a spike when the 
current estimate of the membrane potential is compatible with the 
presynaptic neuron being in its down state increases this probability 
somewhat. Observing a second spike in a short time window, pro-
viding substantial extra evidence for this up state, will thus cause a 
larger increment in ût (Fig. 2a and Supplementary Fig. 3). EPSPs 
in the facilitating biophysical STP model and in actual facilitating 
synapses in a paired-pulse protocol39 (Figs. 2d and 3b) showed the 
same effect.

Match between STP and the dynamics of the presynaptic cell
Our theory requires the synaptic estimator to be matched to the sta-
tistical properties of the presynaptic membrane potential fluctuations 
that it needs to estimate. Thus, fitting the optimal estimator to experi-
mentally measured STP data (Fig. 3a,b) allowed us to predict, with-
out further parameter fitting, properties of the membrane potential 
dynamics that the corresponding presynaptic cell type should exhibit. 
Testing these predictions is challenging because they are about the 
natural statistics of membrane potential fluctuations and thus require 
in vivo intracellular recordings, preferably from behaving rather than 
anaesthetized animals.

Nevertheless, starting from our fits to data about synaptic depres-
sion and facilitation for cerebellar climbing fibers (Fig. 3a) and hippo-
campal Schäffer collateral inputs (Fig. 3b), we predicted membrane 
potential fluctuations in inferior olive neurons (Fig. 3c) and hippo-
campal pyramidal cells (Fig. 3d), respectively, that were in broad 
qualitative agreement with those found in vivo in these cell types38,40 
(Fig. 3e,f). Note that the absence and presence of marked up and 
down states in these two cell types, respectively, is predicted by our 
theory directly from the absence and presence of facilitation in their 
corresponding efferent synapses.

The advantage of STP
To quantify the advantage that STP brings to synapses for tracking the 
presynaptic membrane potential, we measured how well ût or its bio-
physical analog vt performed on the estimation task in terms of the time-
averaged squared error between ut and its estimate (Online Methods). 
We compared the optimal estimator of the presynaptic membrane poten-
tial (Fig. 4a) with the postsynaptic membrane potential occasioned by 
a synapse undergoing STP. These two traces were very close. Notably, 
a static synapse without STP, whose fixed efficacy is still optimized for 
the same estimation task, performed substantially less well.

Our account of synaptic dynamics assumes no transmission failure 
or, equivalently, a large number of release sites between the pre- and 
postsynaptic cells. Therefore, we also ran simulations with stochastic 
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Figure 2 Estimating the presynaptic membrane potential when the resting membrane potential randomly switches between two different values.  
(a) Presynaptic subthreshold membrane potential with action potentials (black), its optimal mean estimate (û, red line) with the associated s.d.  
( , red shading) and the postsynaptic membrane potential in a model synapse11 with optimally tuned short-term plasticity (blue line). Inset, the (scaled) 
optimal estimator (red solid line) strongly depends on the estimated probability  of being in the up state (red dashed line). (b) EPSP amplitude in the 
optimal estimator depends on its uncertainty (horizontal axis, 2) and the change in the estimated probability that the presynaptic cell is in its up state 
(color code, ). (c) The estimated probability that the presynaptic cell is in its up state  (red) tracks the state of the presynaptic neuron (black) as it 
randomly switches between its up and down states. (d) EPSP magnitudes in the optimal estimator against EPSP magnitudes in the model synapse.
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Figure 3 The optimal estimator reproduces experimentally observed 
patterns of synaptic depression and facilitation. (a) Synaptic depression 
in cerebellar climbing fibers (circles: mean  s.e.m.; redrawn from ref. 6) 
and in the model (solid line), measured as the ratio of the amplitude of 
the eighth and first EPSP as a function of the stimulation rate during a 
train of eight presynaptic spikes. (b) Synaptic facilitation in hippocampal 
Schäffer collaterals (circles, mean  s.e.m.; redrawn from ref. 39) and in 
the model (solid line), measured as the ratio of the amplitude of the second 
and first EPSP as a function of the interval between a pair of presynaptic 
spikes. Shading in a and b shows the robustness of the fits (Online 
Methods): model predictions when best-fit parameters are perturbed by 
5% (dark gray) or 10% (light gray). (c,d) Predictions of the model for the 
dynamics of inferior olive neurons (c) and hippocampal pyramidal neurons (d). 
Sample traces were generated with parameters fitted to the data about STP 
in cerebellar climbing fibers (shown in a) and Schäffer collaterals (shown 
in b). (e,f) In vivo intracellular recordings from inferior olive neurons of the 
(anesthetized) rat (e, reproduced from ref. 40) and hippocampal pyramidal 
cells of the behaving rat (f, reproduced from ref. 38).
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to switch between two possible values, corresponding to an up and a 
down state (Fig. 2, Supplementary Note and Supplementary Fig. 2).

In this extended model, the true current value of ut
rest is unknown to 

the postsynaptic cell, as with ut. Thus, the full solution to the estima-
tion problem is a posterior distribution expressing joint uncertainty 
about these two quantities (Supplementary Note). In this case, the 
estimated probability that ut

rest is in its up state also reflects recent 
spikes and influences ût ( t; Fig. 2a–c). Observing a spike when the 
current estimate of the membrane potential is compatible with the 
presynaptic neuron being in its down state increases this probability 
somewhat. Observing a second spike in a short time window, pro-
viding substantial extra evidence for this up state, will thus cause a 
larger increment in ût (Fig. 2a and Supplementary Fig. 3). EPSPs 
in the facilitating biophysical STP model and in actual facilitating 
synapses in a paired-pulse protocol39 (Figs. 2d and 3b) showed the 
same effect.

Match between STP and the dynamics of the presynaptic cell
Our theory requires the synaptic estimator to be matched to the sta-
tistical properties of the presynaptic membrane potential fluctuations 
that it needs to estimate. Thus, fitting the optimal estimator to experi-
mentally measured STP data (Fig. 3a,b) allowed us to predict, with-
out further parameter fitting, properties of the membrane potential 
dynamics that the corresponding presynaptic cell type should exhibit. 
Testing these predictions is challenging because they are about the 
natural statistics of membrane potential fluctuations and thus require 
in vivo intracellular recordings, preferably from behaving rather than 
anaesthetized animals.

Nevertheless, starting from our fits to data about synaptic depres-
sion and facilitation for cerebellar climbing fibers (Fig. 3a) and hippo-
campal Schäffer collateral inputs (Fig. 3b), we predicted membrane 
potential fluctuations in inferior olive neurons (Fig. 3c) and hippo-
campal pyramidal cells (Fig. 3d), respectively, that were in broad 
qualitative agreement with those found in vivo in these cell types38,40 
(Fig. 3e,f). Note that the absence and presence of marked up and 
down states in these two cell types, respectively, is predicted by our 
theory directly from the absence and presence of facilitation in their 
corresponding efferent synapses.

The advantage of STP
To quantify the advantage that STP brings to synapses for tracking the 
presynaptic membrane potential, we measured how well ût or its bio-
physical analog vt performed on the estimation task in terms of the time-
averaged squared error between ut and its estimate (Online Methods). 
We compared the optimal estimator of the presynaptic membrane poten-
tial (Fig. 4a) with the postsynaptic membrane potential occasioned by 
a synapse undergoing STP. These two traces were very close. Notably, 
a static synapse without STP, whose fixed efficacy is still optimized for 
the same estimation task, performed substantially less well.

Our account of synaptic dynamics assumes no transmission failure 
or, equivalently, a large number of release sites between the pre- and 
postsynaptic cells. Therefore, we also ran simulations with stochastic 
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Figure 2 Estimating the presynaptic membrane potential when the resting membrane potential randomly switches between two different values.  
(a) Presynaptic subthreshold membrane potential with action potentials (black), its optimal mean estimate (û, red line) with the associated s.d.  
( , red shading) and the postsynaptic membrane potential in a model synapse11 with optimally tuned short-term plasticity (blue line). Inset, the (scaled) 
optimal estimator (red solid line) strongly depends on the estimated probability  of being in the up state (red dashed line). (b) EPSP amplitude in the 
optimal estimator depends on its uncertainty (horizontal axis, 2) and the change in the estimated probability that the presynaptic cell is in its up state 
(color code, ). (c) The estimated probability that the presynaptic cell is in its up state  (red) tracks the state of the presynaptic neuron (black) as it 
randomly switches between its up and down states. (d) EPSP magnitudes in the optimal estimator against EPSP magnitudes in the model synapse.
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Figure 3 The optimal estimator reproduces experimentally observed 
patterns of synaptic depression and facilitation. (a) Synaptic depression 
in cerebellar climbing fibers (circles: mean  s.e.m.; redrawn from ref. 6) 
and in the model (solid line), measured as the ratio of the amplitude of 
the eighth and first EPSP as a function of the stimulation rate during a 
train of eight presynaptic spikes. (b) Synaptic facilitation in hippocampal 
Schäffer collaterals (circles, mean  s.e.m.; redrawn from ref. 39) and in 
the model (solid line), measured as the ratio of the amplitude of the second 
and first EPSP as a function of the interval between a pair of presynaptic 
spikes. Shading in a and b shows the robustness of the fits (Online 
Methods): model predictions when best-fit parameters are perturbed by 
5% (dark gray) or 10% (light gray). (c,d) Predictions of the model for the 
dynamics of inferior olive neurons (c) and hippocampal pyramidal neurons (d). 
Sample traces were generated with parameters fitted to the data about STP 
in cerebellar climbing fibers (shown in a) and Schäffer collaterals (shown 
in b). (e,f) In vivo intracellular recordings from inferior olive neurons of the 
(anesthetized) rat (e, reproduced from ref. 40) and hippocampal pyramidal 
cells of the behaving rat (f, reproduced from ref. 38).

©
20

10
 N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

NATURE NEUROSCIENCE ADVANCE ONLINE PUBLICATION 3

A R T I C L E S

to switch between two possible values, corresponding to an up and a 
down state (Fig. 2, Supplementary Note and Supplementary Fig. 2).

In this extended model, the true current value of ut
rest is unknown to 

the postsynaptic cell, as with ut. Thus, the full solution to the estima-
tion problem is a posterior distribution expressing joint uncertainty 
about these two quantities (Supplementary Note). In this case, the 
estimated probability that ut

rest is in its up state also reflects recent 
spikes and influences ût ( t; Fig. 2a–c). Observing a spike when the 
current estimate of the membrane potential is compatible with the 
presynaptic neuron being in its down state increases this probability 
somewhat. Observing a second spike in a short time window, pro-
viding substantial extra evidence for this up state, will thus cause a 
larger increment in ût (Fig. 2a and Supplementary Fig. 3). EPSPs 
in the facilitating biophysical STP model and in actual facilitating 
synapses in a paired-pulse protocol39 (Figs. 2d and 3b) showed the 
same effect.

Match between STP and the dynamics of the presynaptic cell
Our theory requires the synaptic estimator to be matched to the sta-
tistical properties of the presynaptic membrane potential fluctuations 
that it needs to estimate. Thus, fitting the optimal estimator to experi-
mentally measured STP data (Fig. 3a,b) allowed us to predict, with-
out further parameter fitting, properties of the membrane potential 
dynamics that the corresponding presynaptic cell type should exhibit. 
Testing these predictions is challenging because they are about the 
natural statistics of membrane potential fluctuations and thus require 
in vivo intracellular recordings, preferably from behaving rather than 
anaesthetized animals.

Nevertheless, starting from our fits to data about synaptic depres-
sion and facilitation for cerebellar climbing fibers (Fig. 3a) and hippo-
campal Schäffer collateral inputs (Fig. 3b), we predicted membrane 
potential fluctuations in inferior olive neurons (Fig. 3c) and hippo-
campal pyramidal cells (Fig. 3d), respectively, that were in broad 
qualitative agreement with those found in vivo in these cell types38,40 
(Fig. 3e,f). Note that the absence and presence of marked up and 
down states in these two cell types, respectively, is predicted by our 
theory directly from the absence and presence of facilitation in their 
corresponding efferent synapses.

The advantage of STP
To quantify the advantage that STP brings to synapses for tracking the 
presynaptic membrane potential, we measured how well ût or its bio-
physical analog vt performed on the estimation task in terms of the time-
averaged squared error between ut and its estimate (Online Methods). 
We compared the optimal estimator of the presynaptic membrane poten-
tial (Fig. 4a) with the postsynaptic membrane potential occasioned by 
a synapse undergoing STP. These two traces were very close. Notably, 
a static synapse without STP, whose fixed efficacy is still optimized for 
the same estimation task, performed substantially less well.

Our account of synaptic dynamics assumes no transmission failure 
or, equivalently, a large number of release sites between the pre- and 
postsynaptic cells. Therefore, we also ran simulations with stochastic 
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Figure 2 Estimating the presynaptic membrane potential when the resting membrane potential randomly switches between two different values.  
(a) Presynaptic subthreshold membrane potential with action potentials (black), its optimal mean estimate (û, red line) with the associated s.d.  
( , red shading) and the postsynaptic membrane potential in a model synapse11 with optimally tuned short-term plasticity (blue line). Inset, the (scaled) 
optimal estimator (red solid line) strongly depends on the estimated probability  of being in the up state (red dashed line). (b) EPSP amplitude in the 
optimal estimator depends on its uncertainty (horizontal axis, 2) and the change in the estimated probability that the presynaptic cell is in its up state 
(color code, ). (c) The estimated probability that the presynaptic cell is in its up state  (red) tracks the state of the presynaptic neuron (black) as it 
randomly switches between its up and down states. (d) EPSP magnitudes in the optimal estimator against EPSP magnitudes in the model synapse.
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Figure 3 The optimal estimator reproduces experimentally observed 
patterns of synaptic depression and facilitation. (a) Synaptic depression 
in cerebellar climbing fibers (circles: mean  s.e.m.; redrawn from ref. 6) 
and in the model (solid line), measured as the ratio of the amplitude of 
the eighth and first EPSP as a function of the stimulation rate during a 
train of eight presynaptic spikes. (b) Synaptic facilitation in hippocampal 
Schäffer collaterals (circles, mean  s.e.m.; redrawn from ref. 39) and in 
the model (solid line), measured as the ratio of the amplitude of the second 
and first EPSP as a function of the interval between a pair of presynaptic 
spikes. Shading in a and b shows the robustness of the fits (Online 
Methods): model predictions when best-fit parameters are perturbed by 
5% (dark gray) or 10% (light gray). (c,d) Predictions of the model for the 
dynamics of inferior olive neurons (c) and hippocampal pyramidal neurons (d). 
Sample traces were generated with parameters fitted to the data about STP 
in cerebellar climbing fibers (shown in a) and Schäffer collaterals (shown 
in b). (e,f) In vivo intracellular recordings from inferior olive neurons of the 
(anesthetized) rat (e, reproduced from ref. 40) and hippocampal pyramidal 
cells of the behaving rat (f, reproduced from ref. 38).
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to switch between two possible values, corresponding to an up and a 
down state (Fig. 2, Supplementary Note and Supplementary Fig. 2).

In this extended model, the true current value of ut
rest is unknown to 

the postsynaptic cell, as with ut. Thus, the full solution to the estima-
tion problem is a posterior distribution expressing joint uncertainty 
about these two quantities (Supplementary Note). In this case, the 
estimated probability that ut

rest is in its up state also reflects recent 
spikes and influences ût ( t; Fig. 2a–c). Observing a spike when the 
current estimate of the membrane potential is compatible with the 
presynaptic neuron being in its down state increases this probability 
somewhat. Observing a second spike in a short time window, pro-
viding substantial extra evidence for this up state, will thus cause a 
larger increment in ût (Fig. 2a and Supplementary Fig. 3). EPSPs 
in the facilitating biophysical STP model and in actual facilitating 
synapses in a paired-pulse protocol39 (Figs. 2d and 3b) showed the 
same effect.

Match between STP and the dynamics of the presynaptic cell
Our theory requires the synaptic estimator to be matched to the sta-
tistical properties of the presynaptic membrane potential fluctuations 
that it needs to estimate. Thus, fitting the optimal estimator to experi-
mentally measured STP data (Fig. 3a,b) allowed us to predict, with-
out further parameter fitting, properties of the membrane potential 
dynamics that the corresponding presynaptic cell type should exhibit. 
Testing these predictions is challenging because they are about the 
natural statistics of membrane potential fluctuations and thus require 
in vivo intracellular recordings, preferably from behaving rather than 
anaesthetized animals.

Nevertheless, starting from our fits to data about synaptic depres-
sion and facilitation for cerebellar climbing fibers (Fig. 3a) and hippo-
campal Schäffer collateral inputs (Fig. 3b), we predicted membrane 
potential fluctuations in inferior olive neurons (Fig. 3c) and hippo-
campal pyramidal cells (Fig. 3d), respectively, that were in broad 
qualitative agreement with those found in vivo in these cell types38,40 
(Fig. 3e,f). Note that the absence and presence of marked up and 
down states in these two cell types, respectively, is predicted by our 
theory directly from the absence and presence of facilitation in their 
corresponding efferent synapses.

The advantage of STP
To quantify the advantage that STP brings to synapses for tracking the 
presynaptic membrane potential, we measured how well ût or its bio-
physical analog vt performed on the estimation task in terms of the time-
averaged squared error between ut and its estimate (Online Methods). 
We compared the optimal estimator of the presynaptic membrane poten-
tial (Fig. 4a) with the postsynaptic membrane potential occasioned by 
a synapse undergoing STP. These two traces were very close. Notably, 
a static synapse without STP, whose fixed efficacy is still optimized for 
the same estimation task, performed substantially less well.

Our account of synaptic dynamics assumes no transmission failure 
or, equivalently, a large number of release sites between the pre- and 
postsynaptic cells. Therefore, we also ran simulations with stochastic 

c

0
0

1

200 400 600
Time (ms)

800 1,000

d

0 2
Dynamical synapse

EPSP amplitude (mV)

4 6
0

O
pt

im
al

 e
st

im
at

or

2

4

6
–30

–40

–50

–60

–70

M
em

br
an

e
po

te
nt

ia
l (

m
V

)

0 200 400

0

1

600
Time (ms)

800 1,000

a

0

2

E
P

S
P

 a
m

pl
itu

de
 (

m
V

)

4

6

8
b

2 4
Estimator uncertainty 2(mV2)

6 8
0

0.1

0.2

0.3

0.4

0.5

∆

Figure 2 Estimating the presynaptic membrane potential when the resting membrane potential randomly switches between two different values.  
(a) Presynaptic subthreshold membrane potential with action potentials (black), its optimal mean estimate (û, red line) with the associated s.d.  
( , red shading) and the postsynaptic membrane potential in a model synapse11 with optimally tuned short-term plasticity (blue line). Inset, the (scaled) 
optimal estimator (red solid line) strongly depends on the estimated probability  of being in the up state (red dashed line). (b) EPSP amplitude in the 
optimal estimator depends on its uncertainty (horizontal axis, 2) and the change in the estimated probability that the presynaptic cell is in its up state 
(color code, ). (c) The estimated probability that the presynaptic cell is in its up state  (red) tracks the state of the presynaptic neuron (black) as it 
randomly switches between its up and down states. (d) EPSP magnitudes in the optimal estimator against EPSP magnitudes in the model synapse.
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Figure 3 The optimal estimator reproduces experimentally observed 
patterns of synaptic depression and facilitation. (a) Synaptic depression 
in cerebellar climbing fibers (circles: mean  s.e.m.; redrawn from ref. 6) 
and in the model (solid line), measured as the ratio of the amplitude of 
the eighth and first EPSP as a function of the stimulation rate during a 
train of eight presynaptic spikes. (b) Synaptic facilitation in hippocampal 
Schäffer collaterals (circles, mean  s.e.m.; redrawn from ref. 39) and in 
the model (solid line), measured as the ratio of the amplitude of the second 
and first EPSP as a function of the interval between a pair of presynaptic 
spikes. Shading in a and b shows the robustness of the fits (Online 
Methods): model predictions when best-fit parameters are perturbed by 
5% (dark gray) or 10% (light gray). (c,d) Predictions of the model for the 
dynamics of inferior olive neurons (c) and hippocampal pyramidal neurons (d). 
Sample traces were generated with parameters fitted to the data about STP 
in cerebellar climbing fibers (shown in a) and Schäffer collaterals (shown 
in b). (e,f) In vivo intracellular recordings from inferior olive neurons of the 
(anesthetized) rat (e, reproduced from ref. 40) and hippocampal pyramidal 
cells of the behaving rat (f, reproduced from ref. 38).
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to switch between two possible values, corresponding to an up and a 
down state (Fig. 2, Supplementary Note and Supplementary Fig. 2).

In this extended model, the true current value of ut
rest is unknown to 

the postsynaptic cell, as with ut. Thus, the full solution to the estima-
tion problem is a posterior distribution expressing joint uncertainty 
about these two quantities (Supplementary Note). In this case, the 
estimated probability that ut

rest is in its up state also reflects recent 
spikes and influences ût ( t; Fig. 2a–c). Observing a spike when the 
current estimate of the membrane potential is compatible with the 
presynaptic neuron being in its down state increases this probability 
somewhat. Observing a second spike in a short time window, pro-
viding substantial extra evidence for this up state, will thus cause a 
larger increment in ût (Fig. 2a and Supplementary Fig. 3). EPSPs 
in the facilitating biophysical STP model and in actual facilitating 
synapses in a paired-pulse protocol39 (Figs. 2d and 3b) showed the 
same effect.

Match between STP and the dynamics of the presynaptic cell
Our theory requires the synaptic estimator to be matched to the sta-
tistical properties of the presynaptic membrane potential fluctuations 
that it needs to estimate. Thus, fitting the optimal estimator to experi-
mentally measured STP data (Fig. 3a,b) allowed us to predict, with-
out further parameter fitting, properties of the membrane potential 
dynamics that the corresponding presynaptic cell type should exhibit. 
Testing these predictions is challenging because they are about the 
natural statistics of membrane potential fluctuations and thus require 
in vivo intracellular recordings, preferably from behaving rather than 
anaesthetized animals.

Nevertheless, starting from our fits to data about synaptic depres-
sion and facilitation for cerebellar climbing fibers (Fig. 3a) and hippo-
campal Schäffer collateral inputs (Fig. 3b), we predicted membrane 
potential fluctuations in inferior olive neurons (Fig. 3c) and hippo-
campal pyramidal cells (Fig. 3d), respectively, that were in broad 
qualitative agreement with those found in vivo in these cell types38,40 
(Fig. 3e,f). Note that the absence and presence of marked up and 
down states in these two cell types, respectively, is predicted by our 
theory directly from the absence and presence of facilitation in their 
corresponding efferent synapses.

The advantage of STP
To quantify the advantage that STP brings to synapses for tracking the 
presynaptic membrane potential, we measured how well ût or its bio-
physical analog vt performed on the estimation task in terms of the time-
averaged squared error between ut and its estimate (Online Methods). 
We compared the optimal estimator of the presynaptic membrane poten-
tial (Fig. 4a) with the postsynaptic membrane potential occasioned by 
a synapse undergoing STP. These two traces were very close. Notably, 
a static synapse without STP, whose fixed efficacy is still optimized for 
the same estimation task, performed substantially less well.

Our account of synaptic dynamics assumes no transmission failure 
or, equivalently, a large number of release sites between the pre- and 
postsynaptic cells. Therefore, we also ran simulations with stochastic 
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Figure 2 Estimating the presynaptic membrane potential when the resting membrane potential randomly switches between two different values.  
(a) Presynaptic subthreshold membrane potential with action potentials (black), its optimal mean estimate (û, red line) with the associated s.d.  
( , red shading) and the postsynaptic membrane potential in a model synapse11 with optimally tuned short-term plasticity (blue line). Inset, the (scaled) 
optimal estimator (red solid line) strongly depends on the estimated probability  of being in the up state (red dashed line). (b) EPSP amplitude in the 
optimal estimator depends on its uncertainty (horizontal axis, 2) and the change in the estimated probability that the presynaptic cell is in its up state 
(color code, ). (c) The estimated probability that the presynaptic cell is in its up state  (red) tracks the state of the presynaptic neuron (black) as it 
randomly switches between its up and down states. (d) EPSP magnitudes in the optimal estimator against EPSP magnitudes in the model synapse.
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Figure 3 The optimal estimator reproduces experimentally observed 
patterns of synaptic depression and facilitation. (a) Synaptic depression 
in cerebellar climbing fibers (circles: mean  s.e.m.; redrawn from ref. 6) 
and in the model (solid line), measured as the ratio of the amplitude of 
the eighth and first EPSP as a function of the stimulation rate during a 
train of eight presynaptic spikes. (b) Synaptic facilitation in hippocampal 
Schäffer collaterals (circles, mean  s.e.m.; redrawn from ref. 39) and in 
the model (solid line), measured as the ratio of the amplitude of the second 
and first EPSP as a function of the interval between a pair of presynaptic 
spikes. Shading in a and b shows the robustness of the fits (Online 
Methods): model predictions when best-fit parameters are perturbed by 
5% (dark gray) or 10% (light gray). (c,d) Predictions of the model for the 
dynamics of inferior olive neurons (c) and hippocampal pyramidal neurons (d). 
Sample traces were generated with parameters fitted to the data about STP 
in cerebellar climbing fibers (shown in a) and Schäffer collaterals (shown 
in b). (e,f) In vivo intracellular recordings from inferior olive neurons of the 
(anesthetized) rat (e, reproduced from ref. 40) and hippocampal pyramidal 
cells of the behaving rat (f, reproduced from ref. 38).
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to switch between two possible values, corresponding to an up and a 
down state (Fig. 2, Supplementary Note and Supplementary Fig. 2).

In this extended model, the true current value of ut
rest is unknown to 

the postsynaptic cell, as with ut. Thus, the full solution to the estima-
tion problem is a posterior distribution expressing joint uncertainty 
about these two quantities (Supplementary Note). In this case, the 
estimated probability that ut

rest is in its up state also reflects recent 
spikes and influences ût ( t; Fig. 2a–c). Observing a spike when the 
current estimate of the membrane potential is compatible with the 
presynaptic neuron being in its down state increases this probability 
somewhat. Observing a second spike in a short time window, pro-
viding substantial extra evidence for this up state, will thus cause a 
larger increment in ût (Fig. 2a and Supplementary Fig. 3). EPSPs 
in the facilitating biophysical STP model and in actual facilitating 
synapses in a paired-pulse protocol39 (Figs. 2d and 3b) showed the 
same effect.

Match between STP and the dynamics of the presynaptic cell
Our theory requires the synaptic estimator to be matched to the sta-
tistical properties of the presynaptic membrane potential fluctuations 
that it needs to estimate. Thus, fitting the optimal estimator to experi-
mentally measured STP data (Fig. 3a,b) allowed us to predict, with-
out further parameter fitting, properties of the membrane potential 
dynamics that the corresponding presynaptic cell type should exhibit. 
Testing these predictions is challenging because they are about the 
natural statistics of membrane potential fluctuations and thus require 
in vivo intracellular recordings, preferably from behaving rather than 
anaesthetized animals.

Nevertheless, starting from our fits to data about synaptic depres-
sion and facilitation for cerebellar climbing fibers (Fig. 3a) and hippo-
campal Schäffer collateral inputs (Fig. 3b), we predicted membrane 
potential fluctuations in inferior olive neurons (Fig. 3c) and hippo-
campal pyramidal cells (Fig. 3d), respectively, that were in broad 
qualitative agreement with those found in vivo in these cell types38,40 
(Fig. 3e,f). Note that the absence and presence of marked up and 
down states in these two cell types, respectively, is predicted by our 
theory directly from the absence and presence of facilitation in their 
corresponding efferent synapses.

The advantage of STP
To quantify the advantage that STP brings to synapses for tracking the 
presynaptic membrane potential, we measured how well ût or its bio-
physical analog vt performed on the estimation task in terms of the time-
averaged squared error between ut and its estimate (Online Methods). 
We compared the optimal estimator of the presynaptic membrane poten-
tial (Fig. 4a) with the postsynaptic membrane potential occasioned by 
a synapse undergoing STP. These two traces were very close. Notably, 
a static synapse without STP, whose fixed efficacy is still optimized for 
the same estimation task, performed substantially less well.

Our account of synaptic dynamics assumes no transmission failure 
or, equivalently, a large number of release sites between the pre- and 
postsynaptic cells. Therefore, we also ran simulations with stochastic 
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Figure 2 Estimating the presynaptic membrane potential when the resting membrane potential randomly switches between two different values.  
(a) Presynaptic subthreshold membrane potential with action potentials (black), its optimal mean estimate (û, red line) with the associated s.d.  
( , red shading) and the postsynaptic membrane potential in a model synapse11 with optimally tuned short-term plasticity (blue line). Inset, the (scaled) 
optimal estimator (red solid line) strongly depends on the estimated probability  of being in the up state (red dashed line). (b) EPSP amplitude in the 
optimal estimator depends on its uncertainty (horizontal axis, 2) and the change in the estimated probability that the presynaptic cell is in its up state 
(color code, ). (c) The estimated probability that the presynaptic cell is in its up state  (red) tracks the state of the presynaptic neuron (black) as it 
randomly switches between its up and down states. (d) EPSP magnitudes in the optimal estimator against EPSP magnitudes in the model synapse.
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Figure 3 The optimal estimator reproduces experimentally observed 
patterns of synaptic depression and facilitation. (a) Synaptic depression 
in cerebellar climbing fibers (circles: mean  s.e.m.; redrawn from ref. 6) 
and in the model (solid line), measured as the ratio of the amplitude of 
the eighth and first EPSP as a function of the stimulation rate during a 
train of eight presynaptic spikes. (b) Synaptic facilitation in hippocampal 
Schäffer collaterals (circles, mean  s.e.m.; redrawn from ref. 39) and in 
the model (solid line), measured as the ratio of the amplitude of the second 
and first EPSP as a function of the interval between a pair of presynaptic 
spikes. Shading in a and b shows the robustness of the fits (Online 
Methods): model predictions when best-fit parameters are perturbed by 
5% (dark gray) or 10% (light gray). (c,d) Predictions of the model for the 
dynamics of inferior olive neurons (c) and hippocampal pyramidal neurons (d). 
Sample traces were generated with parameters fitted to the data about STP 
in cerebellar climbing fibers (shown in a) and Schäffer collaterals (shown 
in b). (e,f) In vivo intracellular recordings from inferior olive neurons of the 
(anesthetized) rat (e, reproduced from ref. 40) and hippocampal pyramidal 
cells of the behaving rat (f, reproduced from ref. 38).
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to switch between two possible values, corresponding to an up and a 
down state (Fig. 2, Supplementary Note and Supplementary Fig. 2).

In this extended model, the true current value of ut
rest is unknown to 

the postsynaptic cell, as with ut. Thus, the full solution to the estima-
tion problem is a posterior distribution expressing joint uncertainty 
about these two quantities (Supplementary Note). In this case, the 
estimated probability that ut

rest is in its up state also reflects recent 
spikes and influences ût ( t; Fig. 2a–c). Observing a spike when the 
current estimate of the membrane potential is compatible with the 
presynaptic neuron being in its down state increases this probability 
somewhat. Observing a second spike in a short time window, pro-
viding substantial extra evidence for this up state, will thus cause a 
larger increment in ût (Fig. 2a and Supplementary Fig. 3). EPSPs 
in the facilitating biophysical STP model and in actual facilitating 
synapses in a paired-pulse protocol39 (Figs. 2d and 3b) showed the 
same effect.

Match between STP and the dynamics of the presynaptic cell
Our theory requires the synaptic estimator to be matched to the sta-
tistical properties of the presynaptic membrane potential fluctuations 
that it needs to estimate. Thus, fitting the optimal estimator to experi-
mentally measured STP data (Fig. 3a,b) allowed us to predict, with-
out further parameter fitting, properties of the membrane potential 
dynamics that the corresponding presynaptic cell type should exhibit. 
Testing these predictions is challenging because they are about the 
natural statistics of membrane potential fluctuations and thus require 
in vivo intracellular recordings, preferably from behaving rather than 
anaesthetized animals.

Nevertheless, starting from our fits to data about synaptic depres-
sion and facilitation for cerebellar climbing fibers (Fig. 3a) and hippo-
campal Schäffer collateral inputs (Fig. 3b), we predicted membrane 
potential fluctuations in inferior olive neurons (Fig. 3c) and hippo-
campal pyramidal cells (Fig. 3d), respectively, that were in broad 
qualitative agreement with those found in vivo in these cell types38,40 
(Fig. 3e,f). Note that the absence and presence of marked up and 
down states in these two cell types, respectively, is predicted by our 
theory directly from the absence and presence of facilitation in their 
corresponding efferent synapses.

The advantage of STP
To quantify the advantage that STP brings to synapses for tracking the 
presynaptic membrane potential, we measured how well ût or its bio-
physical analog vt performed on the estimation task in terms of the time-
averaged squared error between ut and its estimate (Online Methods). 
We compared the optimal estimator of the presynaptic membrane poten-
tial (Fig. 4a) with the postsynaptic membrane potential occasioned by 
a synapse undergoing STP. These two traces were very close. Notably, 
a static synapse without STP, whose fixed efficacy is still optimized for 
the same estimation task, performed substantially less well.

Our account of synaptic dynamics assumes no transmission failure 
or, equivalently, a large number of release sites between the pre- and 
postsynaptic cells. Therefore, we also ran simulations with stochastic 
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(a) Presynaptic subthreshold membrane potential with action potentials (black), its optimal mean estimate (û, red line) with the associated s.d.  
( , red shading) and the postsynaptic membrane potential in a model synapse11 with optimally tuned short-term plasticity (blue line). Inset, the (scaled) 
optimal estimator (red solid line) strongly depends on the estimated probability  of being in the up state (red dashed line). (b) EPSP amplitude in the 
optimal estimator depends on its uncertainty (horizontal axis, 2) and the change in the estimated probability that the presynaptic cell is in its up state 
(color code, ). (c) The estimated probability that the presynaptic cell is in its up state  (red) tracks the state of the presynaptic neuron (black) as it 
randomly switches between its up and down states. (d) EPSP magnitudes in the optimal estimator against EPSP magnitudes in the model synapse.
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Figure 3 The optimal estimator reproduces experimentally observed 
patterns of synaptic depression and facilitation. (a) Synaptic depression 
in cerebellar climbing fibers (circles: mean  s.e.m.; redrawn from ref. 6) 
and in the model (solid line), measured as the ratio of the amplitude of 
the eighth and first EPSP as a function of the stimulation rate during a 
train of eight presynaptic spikes. (b) Synaptic facilitation in hippocampal 
Schäffer collaterals (circles, mean  s.e.m.; redrawn from ref. 39) and in 
the model (solid line), measured as the ratio of the amplitude of the second 
and first EPSP as a function of the interval between a pair of presynaptic 
spikes. Shading in a and b shows the robustness of the fits (Online 
Methods): model predictions when best-fit parameters are perturbed by 
5% (dark gray) or 10% (light gray). (c,d) Predictions of the model for the 
dynamics of inferior olive neurons (c) and hippocampal pyramidal neurons (d). 
Sample traces were generated with parameters fitted to the data about STP 
in cerebellar climbing fibers (shown in a) and Schäffer collaterals (shown 
in b). (e,f) In vivo intracellular recordings from inferior olive neurons of the 
(anesthetized) rat (e, reproduced from ref. 40) and hippocampal pyramidal 
cells of the behaving rat (f, reproduced from ref. 38).
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Figure 5. Estimation performance of the presynaptic membrane potential. (a) Peformance as a
function of the determinism of presynaptic spiking, � (see Methods), in the optimal estimator
(red), an optimally fitted dynamical synapse (blue), and an optimally fitted static synapse,
without short-term plasticity (green). When � = 0 (entirely stochastic spiking), spikes are
generated independently of the membrane potential, and as a consequence, all models fail to
track the membrane potential. As � becomes larger (more deterministic spiking), the dynamical
synapse model matches the optimal estimator in performance and significantly outperforms the
static synapse. Realistic values for �⇥OU (here ⇥OU = 1 mV) have been found to be between
2 and 3 in L5 pyramidal cells of somatosensory cortex53. (b) Estimation performance with
stochastic vesicle release as a function of the number of synaptic release sites, N . The dynamical
synapse (green) tracks the performance of the optimal estimator (red) well and outperforms
the static synapse (blue) at all values of N . The performance of all estimators decreases only
when the number of independent release sites becomes very low (N = 1 or 2). When N is large
(N � ⇥), synaptic transmission becomes deterministic, even though spike generation itself
remains stochastic (with parameter � = 2 shown by the arrow in a).
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synapse w/o STP
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Spike generation is described by the same rule as before (Eqs. 6-7).

Although we were able to develop some analytical insight into the behavior of the optimal
estimator in the case of a switching OU process (Supplementary Note), a full analytical
treatment remains a challenging task. Thus, the results displayed in Fig. 4 have been obtained
by using standard particle filtering techniques52 (see Supplementary Methods).

Biophysically motivated STP model

The model we used was taken directly from Ref. 11 as a canonical model of a synapse undergoing
STP. It describes how the postsynaptic potential v(t), the synaptic resource x(t) (responsible for
depression) and the utilisation factor y(t) (responsible for facilitation) co-vary in time:

v̇(t) =
v0 � v(t)

⌅m
+ J y(t) x(t) s(t) (17)

ẋ(t) =
1� x(t)

⌅D
� y(t) x(t) s(t) (18)

ẏ(t) =
Y � y(t)

⌅F
+ Y (1� y(t)) s(t) (19)

where v0 is the postsynaptic resting membrane potential, ⌅m is the postsynaptic membrane
constant, J is (the static part of) synaptic e⇤cacy, Y is the maximal synaptic utilization (and
the rate of increase in y in response to a spike), ⌅D is the time constant of synaptic depression,
and ⌅F is the facilitation time constant. Note that if the facilitation time constant is very short
(⌅F ⇥ 0), then y(t) can be replaced by Y in Eqs. 17 and 18, resulting in pure depression.

Measuring the performance of estimators

The performance of an estimator, P , was measured as its rescaled root mean squared error
(Fig. 5):

P = 1� 1
⇤OU

�
1
T

⇤ T

0
(û(t)� u(t))2 dt

⇥ 1
2

(20)

where ût can be substituted with vt to measure the performance of the biophysical models. Note
that this provides a suitably normalized measure of performance as perfect estimation results
in P = 1, and an estimator that outputs the temporally averaged mean presynaptic membrane
potential, thereby completely ignoring presynaptic spikes, has P = 0.

Model parameters for simulations

Unless otherwise noted, the OU time constant is ⌅ = 20 ms. The spiking determinism parameter
is ��1 = 3 mV. g0 is set such that g(�60 mV) = 10 Hz.

For Fig. 1: the standard deviation of the OU process is ⇤OU = 5 mV, the resting membrane
potential is urest = �60 mV.

For Fig. 2a: ⇤OU = 1 mV, ⌅ = 1000 ms, ��1 = 1.1 mV, urest = �60 mV.

For Fig. 2b: the fitted parameters are: ⇤OU = 0.28 mV, ⌅ = 85.7 ms, u� = �65 mV, u+ = �53.9
mV, ⇥� = 1.09 Hz, ⇥+ = 1.13 Hz, ��1 = 3 mV, and g0 was set such that g(�60 mV) = 17.8 Hz.
Note that in this figure, we do not display the experimental data point for the shortest inter-
spike interval (ISI = 5 ms) because at present the spiking model does not include the e�ects of
refractoriness and burstiness which may dominate estimation at such short intervals .

For Fig. 3, 4: the resting values are u� = �65 mV, u+ = �55 mV. The transition rates are
given by ⇥+ = ⇥� = 2 Hz, and ⇤OU = 2 mV.

For Fig. 5: we set urest = �60 mV, ⇤OU = 1 mV, and ��1 = 0.5 mV.

8

performance =
RMSE

Pfister et al, Nat Neurosci 2010
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