COMPUTATIONAL MODELLING OF SYNAPTIC FUNCTION

MÁTÉ LENGYEL

Computational and Biological Learning Lab Department of Engineering University of Cambridge

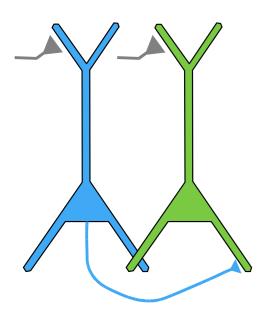
COMPUTATIONAL MODELLING OF SYNAPTIC PLASTICITY

MÁTÉ LENGYEL

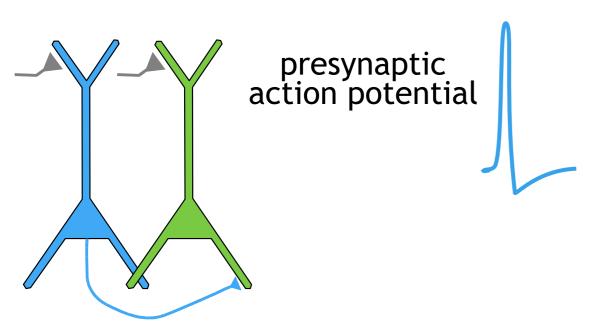
Computational and Biological Learning Lab Department of Engineering University of Cambridge

Synapses are computational devices that not only transmit action potential-encoded information, but also transform it. Neuronal information is often encoded by bursts or trains of action potentials. Synapses process such action potential bursts or trains in a synapsespecific manner that involves use-dependent changes in neurotransmitter release during the burst or train (referred to as short-term plasticity). In addition, synapses experience usedependent long-term changes in synaptic transmission that adjust the "gain" of a synapse, and operate either pre- and/or postsynaptically (referred to as long-term plasticity)

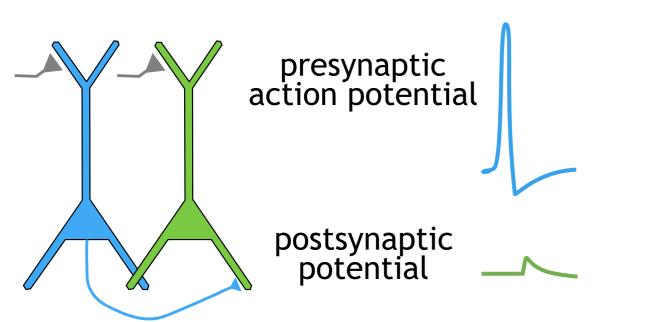
Synapses are computational devices that not only transmit action potential-encoded information, but also transform it. Neuronal information is often encoded by bursts or trains of action potentials. Synapses process such action potential bursts or trains in a synapsespecific manner that involves use-dependent changes in neurotransmitter release during the burst or train (referred to as short-term plasticity). In addition, synapses experience usedependent long-term changes in synaptic transmission that adjust the "gain" of a synapse, and operate either pre- and/or postsynaptically (referred to as long-term plasticity)



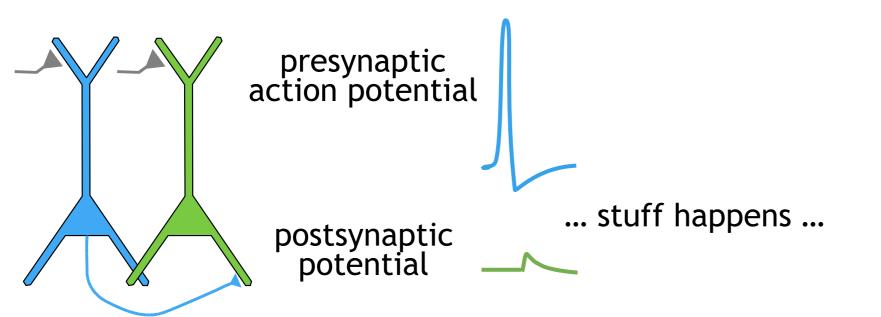
Synapses are computational devices that not only transmit action potential-encoded information, but also transform it. Neuronal information is often encoded by bursts or trains of action potentials. Synapses process such action potential bursts or trains in a synapsespecific manner that involves use-dependent changes in neurotransmitter release during the burst or train (referred to as short-term plasticity). In addition, synapses experience usedependent long-term changes in synaptic transmission that adjust the "gain" of a synapse, and operate either pre- and/or postsynaptically (referred to as long-term plasticity)



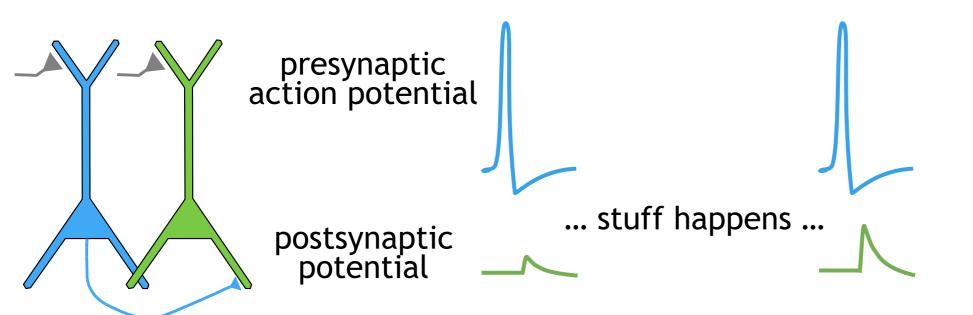
Synapses are computational devices that not only transmit action potential-encoded information, but also transform it. Neuronal information is often encoded by bursts or trains of action potentials. Synapses process such action potential bursts or trains in a synapsespecific manner that involves use-dependent changes in neurotransmitter release during the burst or train (referred to as short-term plasticity). In addition, synapses experience usedependent long-term changes in synaptic transmission that adjust the "gain" of a synapse, and operate either pre- and/or postsynaptically (referred to as long-term plasticity)



Synapses are computational devices that not only transmit action potential-encoded information, but also transform it. Neuronal information is often encoded by bursts or trains of action potentials. Synapses process such action potential bursts or trains in a synapsespecific manner that involves use-dependent changes in neurotransmitter release during the burst or train (referred to as short-term plasticity). In addition, synapses experience usedependent long-term changes in synaptic transmission that adjust the "gain" of a synapse, and operate either pre- and/or postsynaptically (referred to as long-term plasticity)

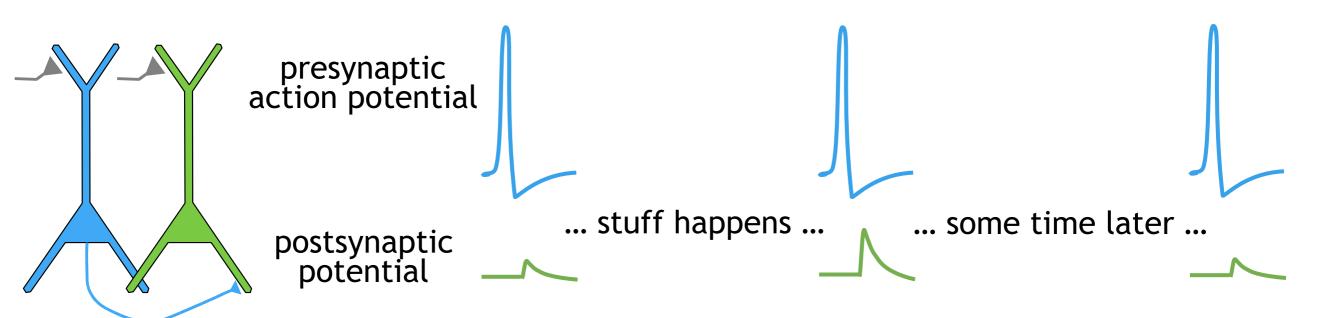


Synapses are computational devices that not only transmit action potential-encoded information, but also transform it. Neuronal information is often encoded by bursts or trains of action potentials. Synapses process such action potential bursts or trains in a synapsespecific manner that involves use-dependent changes in neurotransmitter release during the burst or train (referred to as short-term plasticity). In addition, synapses experience usedependent long-term changes in synaptic transmission that adjust the "gain" of a synapse, and operate either pre- and/or postsynaptically (referred to as long-term plasticity)



Synapses are computational devices that not only transmit action potential-encoded information, but also transform it. Neuronal information is often encoded by bursts or trains of action potentials. Synapses process such action potential bursts or trains in a synapsespecific manner that involves use-dependent changes in neurotransmitter release during the burst or train (referred to as short-term plasticity). In addition, synapses experience usedependent long-term changes in synaptic transmission that adjust the "gain" of a synapse, and operate either pre- and/or postsynaptically (referred to as long-term plasticity)

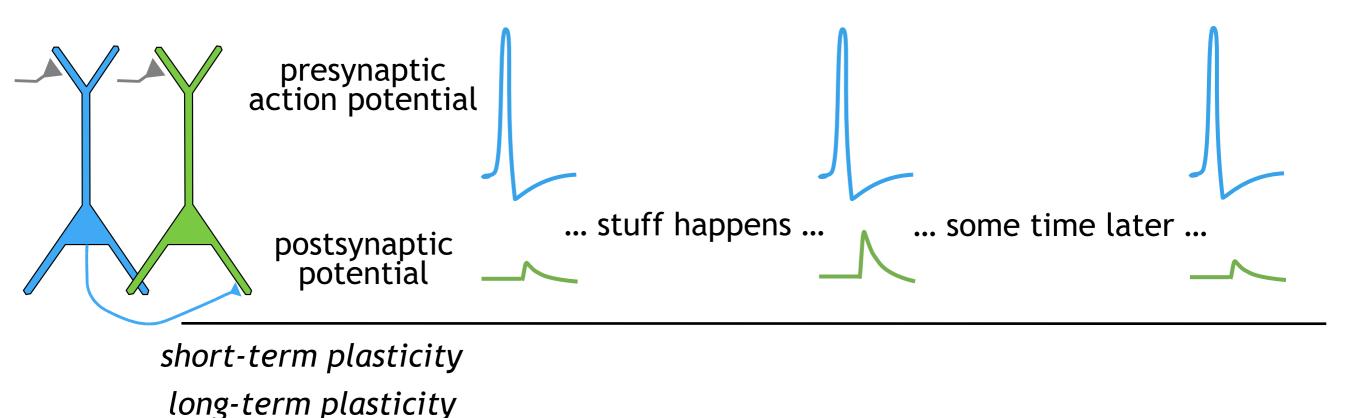
Synapses are computational devices that not only transmit action potential-encoded information, but also transform it. Neuronal information is often encoded by bursts or trains of action potentials. Synapses process such action potential bursts or trains in a synapsespecific manner that involves use-dependent changes in neurotransmitter release during the burst or train (referred to as short-term plasticity). In addition, synapses experience usedependent long-term changes in synaptic transmission that adjust the "gain" of a synapse, and operate either pre- and/or postsynaptically (referred to as long-term plasticity)



Synapses are computational devices that not only transmit action potential-encoded information, but also transform it. Neuronal information is often encoded by bursts or trains of action potentials. Synapses process such action potential bursts or trains in a synapsespecific manner that involves use-dependent changes in neurotransmitter release during the burst or train (referred to as short-term plasticity). In addition, synapses experience usedependent long-term changes in synaptic transmission that adjust the "gain" of a synapse, and operate either pre- and/or postsynaptically (referred to as long-term plasticity)

Südhof, 2012

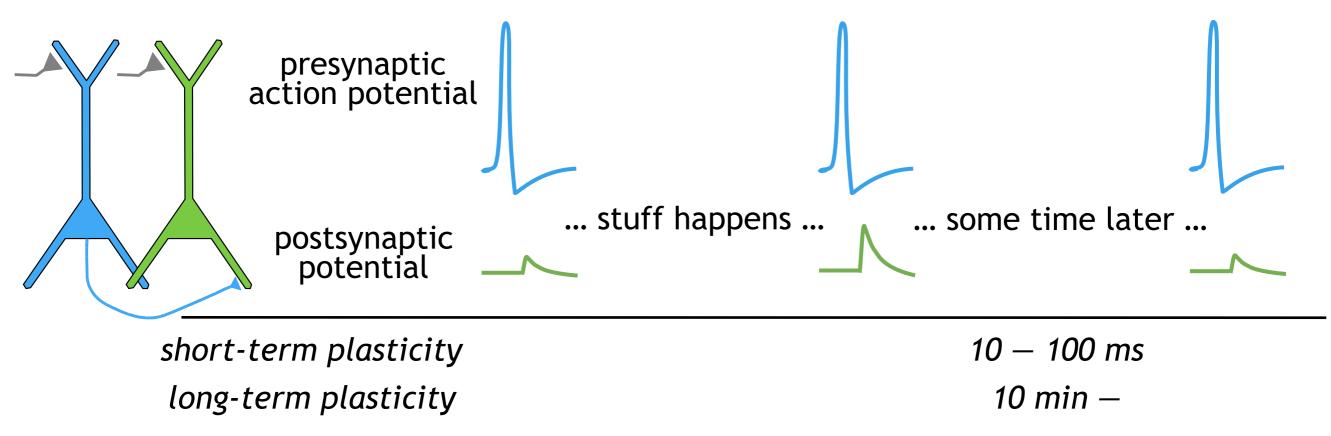
2



Synapses are computational devices that not only transmit action potential-encoded information, but also transform it. Neuronal information is often encoded by bursts or trains of action potentials. Synapses process such action potential bursts or trains in a synapsespecific manner that involves use-dependent changes in neurotransmitter release during the burst or train (referred to as short-term plasticity). In addition, synapses experience usedependent long-term changes in synaptic transmission that adjust the "gain" of a synapse, and operate either pre- and/or postsynaptically (referred to as long-term plasticity)

Südhof, 2012

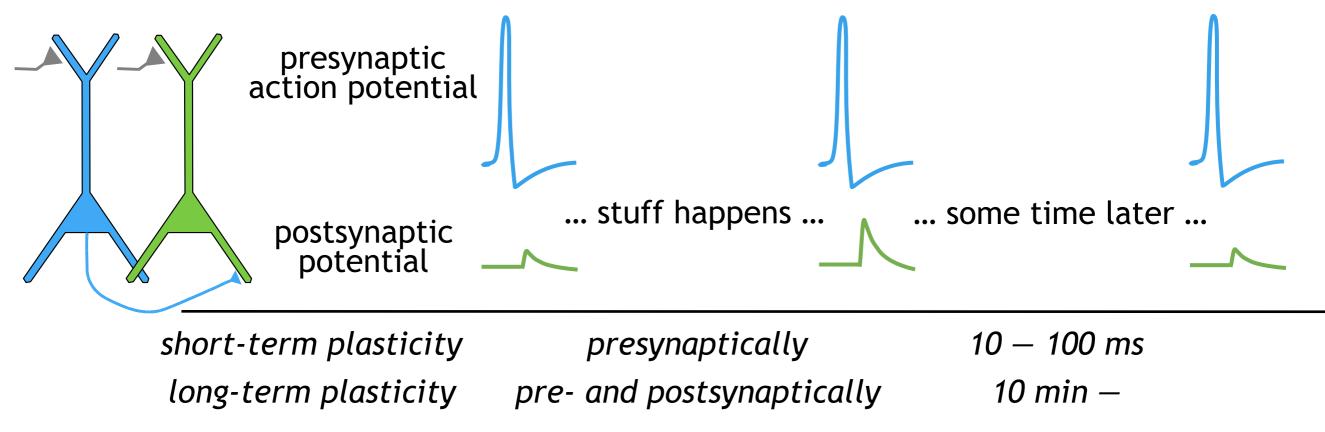
2



Máté Lengyel | Computational modelling of synaptic function MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012 http://www.eng.cam.ac.uk/~m.lengyel

Synapses are computational devices that not only transmit action potential-encoded information, but also transform it. Neuronal information is often encoded by bursts or trains of action potentials. Synapses process such action potential bursts or trains in a synapsespecific manner that involves use-dependent changes in neurotransmitter release during the burst or train (referred to as short-term plasticity). In addition, synapses experience usedependent long-term changes in synaptic transmission that adjust the "gain" of a synapse, and operate either pre- and/or postsynaptically (referred to as long-term plasticity)

Südhof, 2012

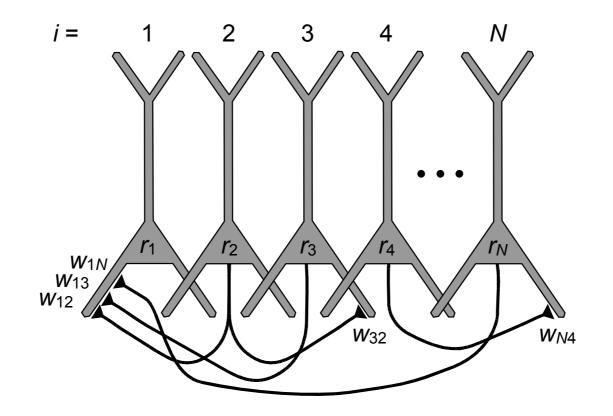


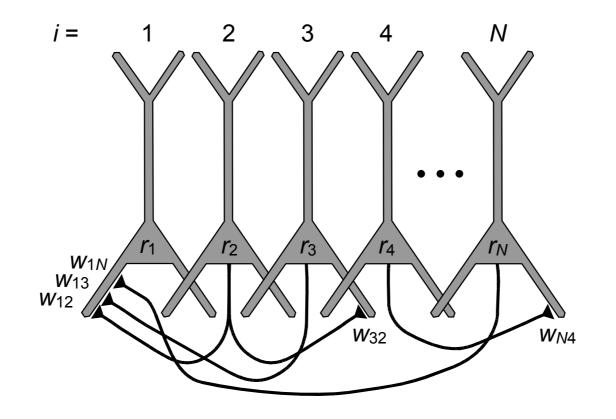
Máté Lengyel | Computational modelling of synaptic function

MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

COMPUTATION: BETWEEN CIRCUITS AND BEHAVIOUR

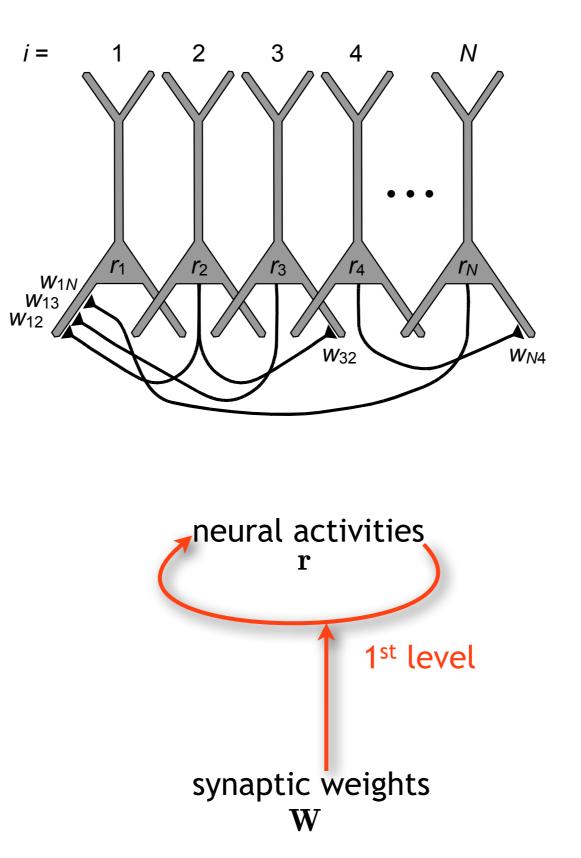
Carandini, 2012

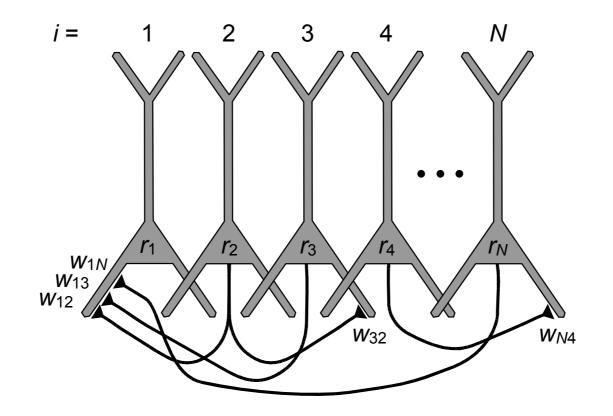


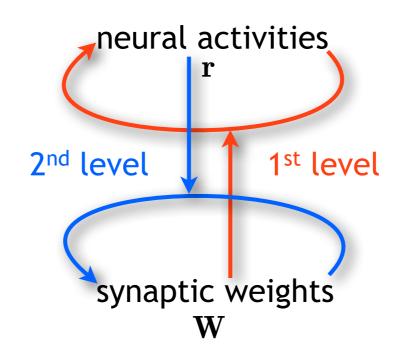


neural activities r

synaptic weights W







AUTOASSOCIATIVE MEMORY: AN EXAMPLE

I raised to my lips a spoonful of the tea in which I had soaked a morsel of the cake. ... And suddenly the memory returns. The taste was that of the little crumb of madeleine which on Sunday mornings at Combray, when I went to say good day to her in her bedroom, my aunt Léonie used to give me, dipping it first in her own cup of real or of lime-flower tea.

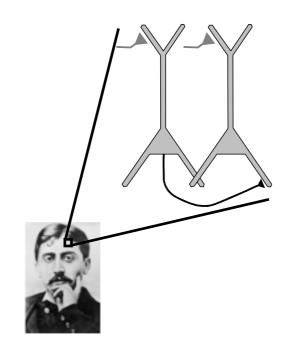
Marcel Proust: À la recherche du temps perdu

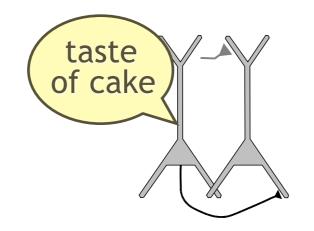
AUTOASSOCIATIVE MEMORY: AN EXAMPLE

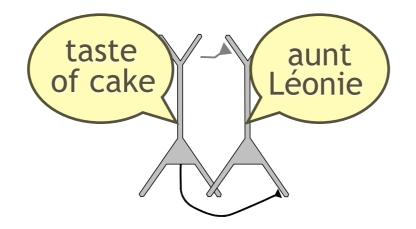
I raised to my lips a spoonful of the tea in which I had soaked a morsel of the cake. ... And suddenly the memory returns. The taste was that of the little crumb of madeleine which on Sunday mornings at Combray, when I went to say good day to her in her bedroom, my aunt Léonie used to give me, dipping it first in her own cup of real or pf lime-flower tea.

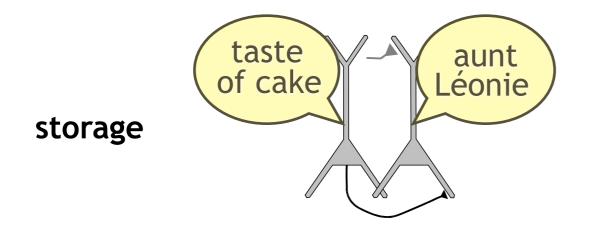
Marcel Proust: À la recherche du temps perdu

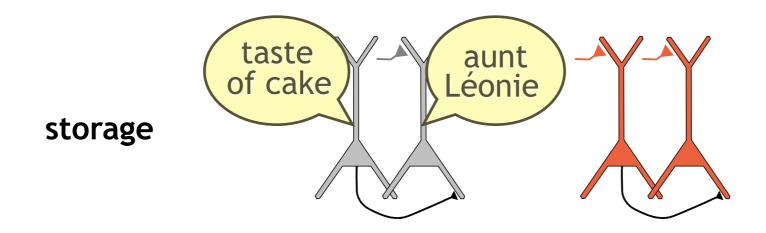
HOW DOES THIS HAPPEN?

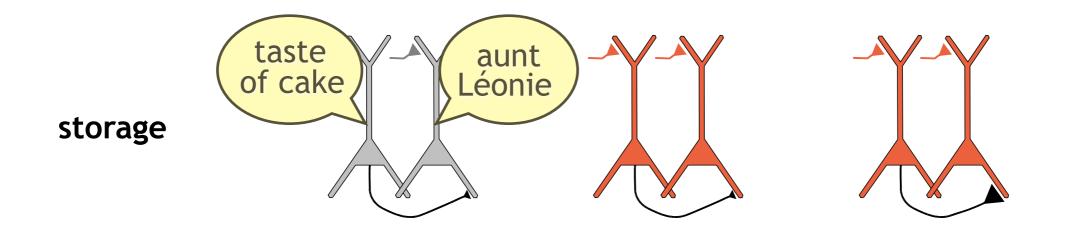




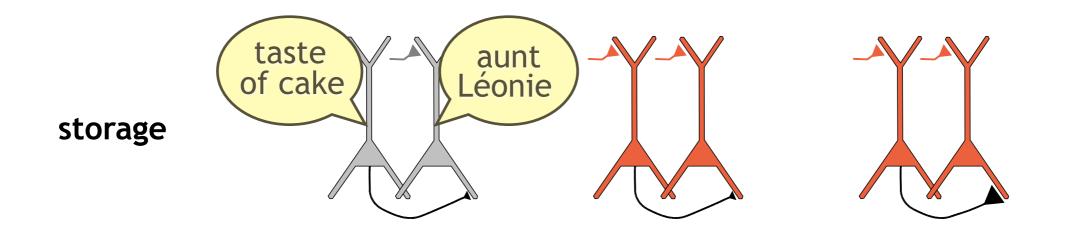




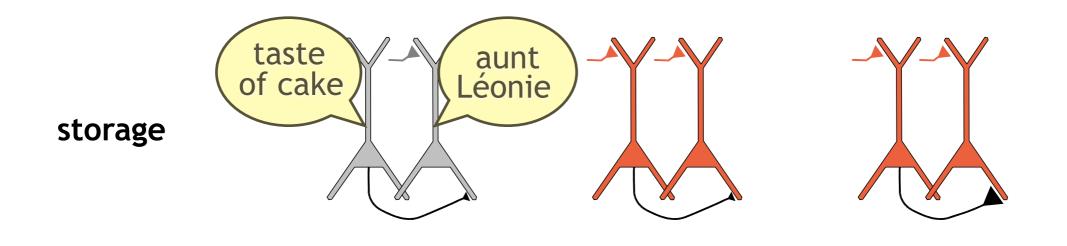


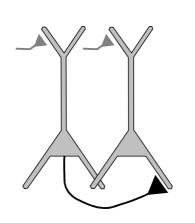


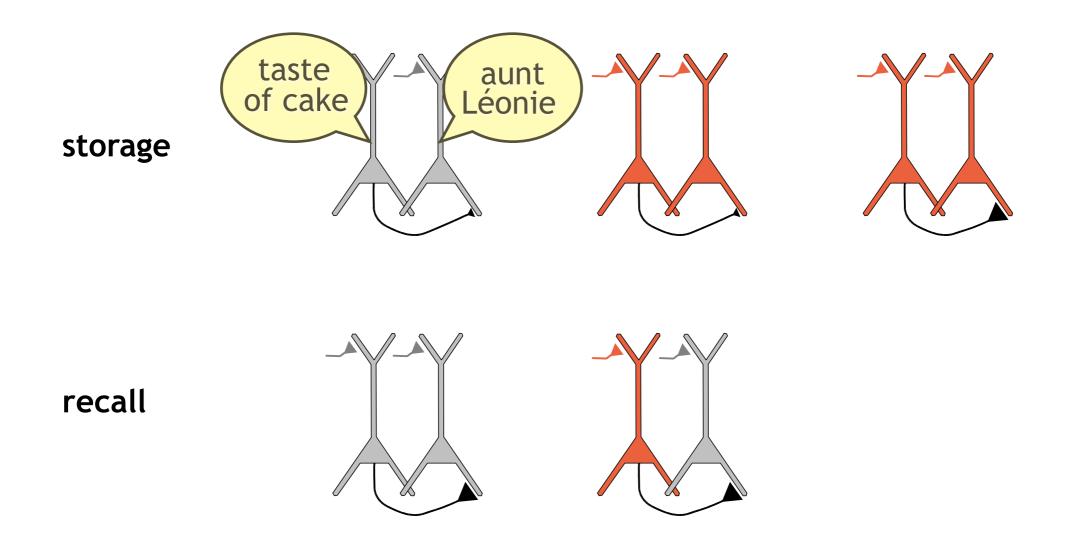
the Hebbian paradigm

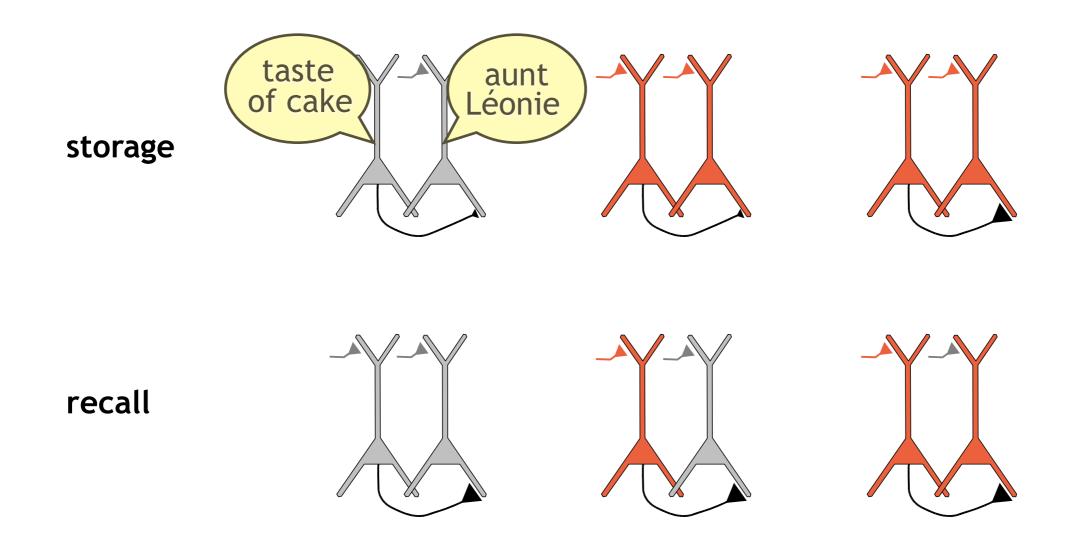


recall

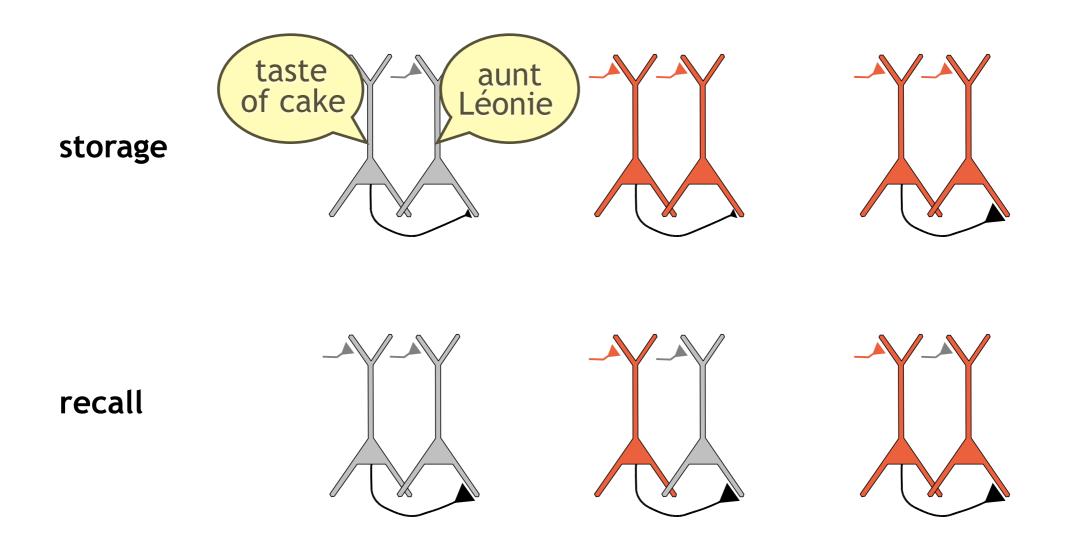




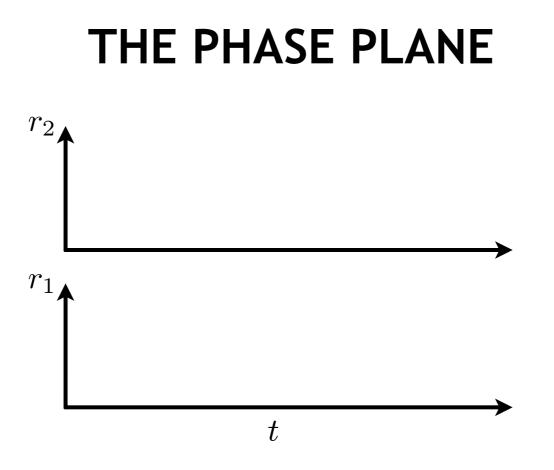


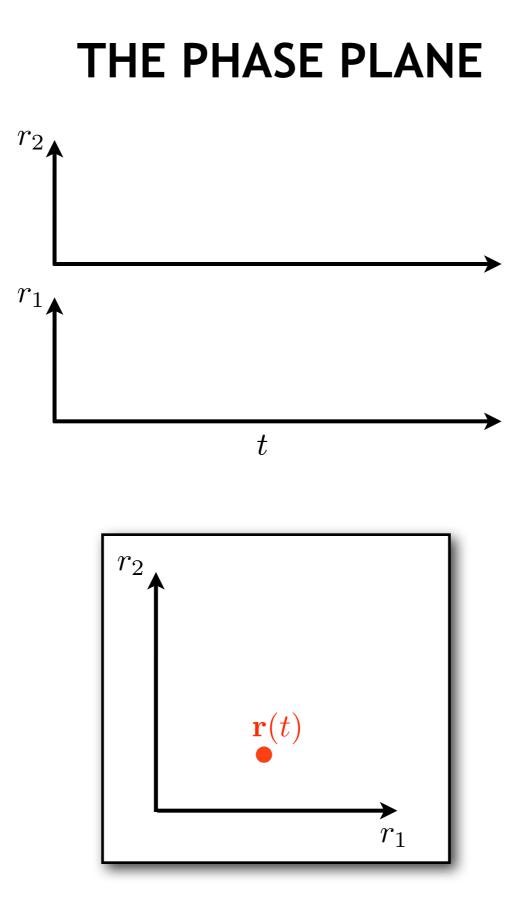


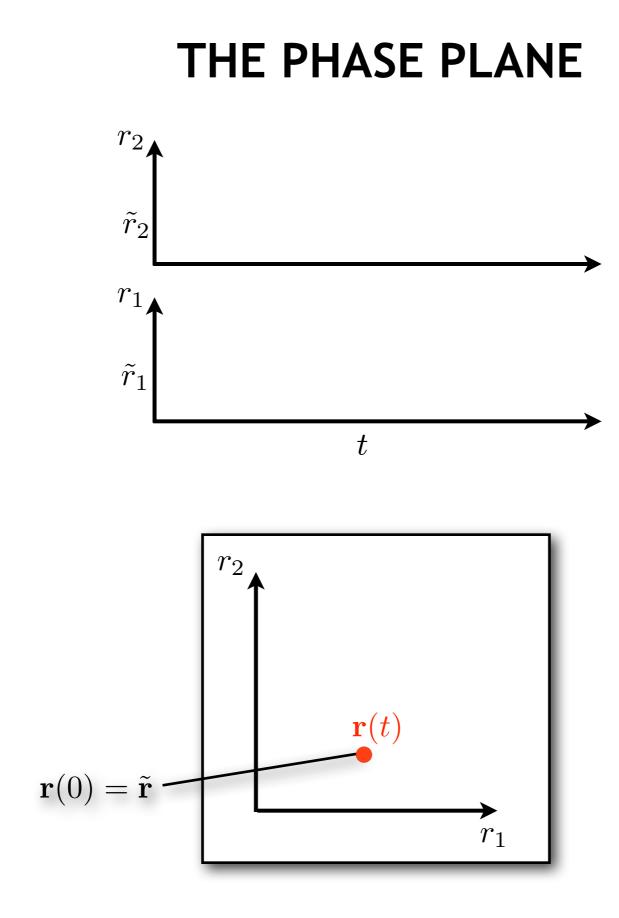
the Hebbian paradigm



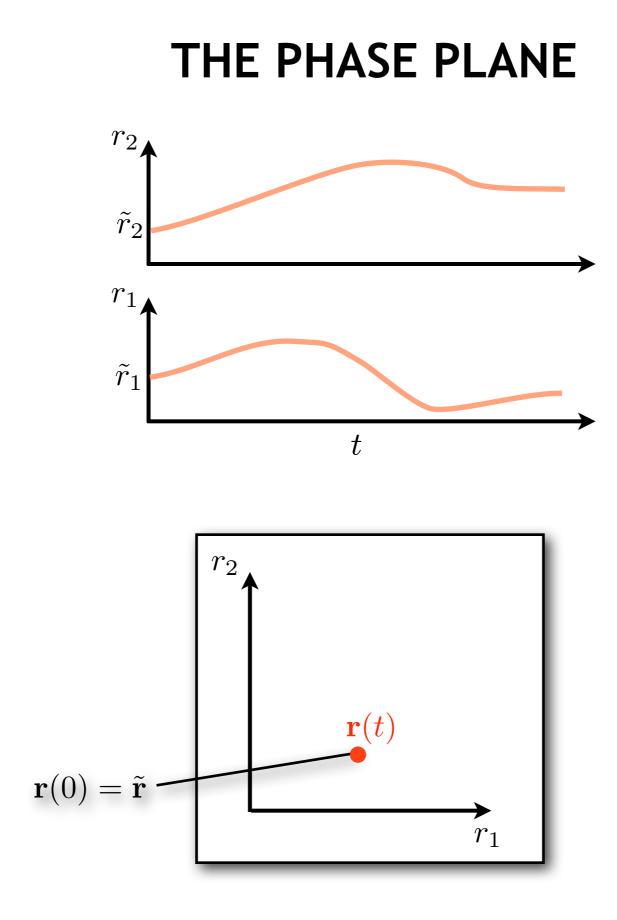
how does this work for **distributed representations**, without assuming aunt Léonie grandmother neurons ?

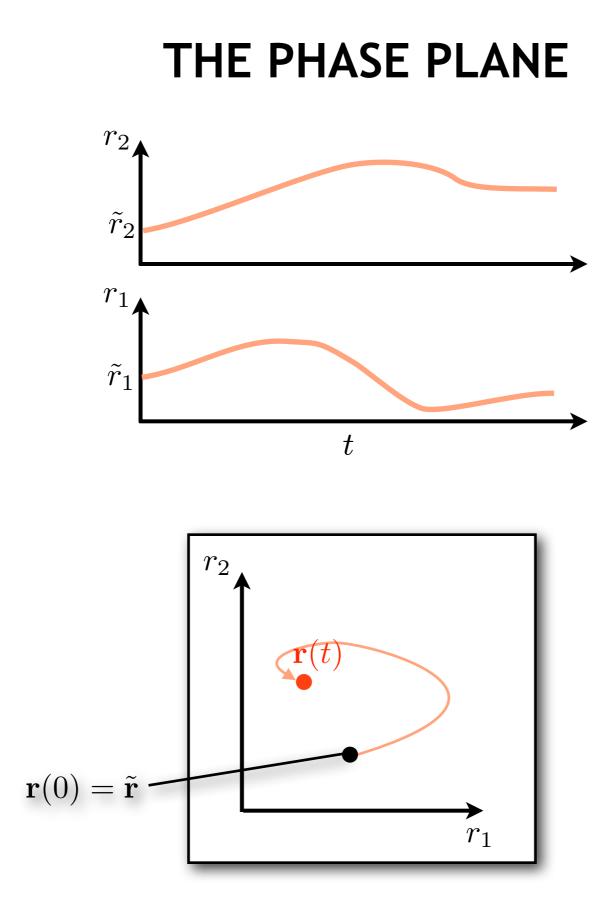




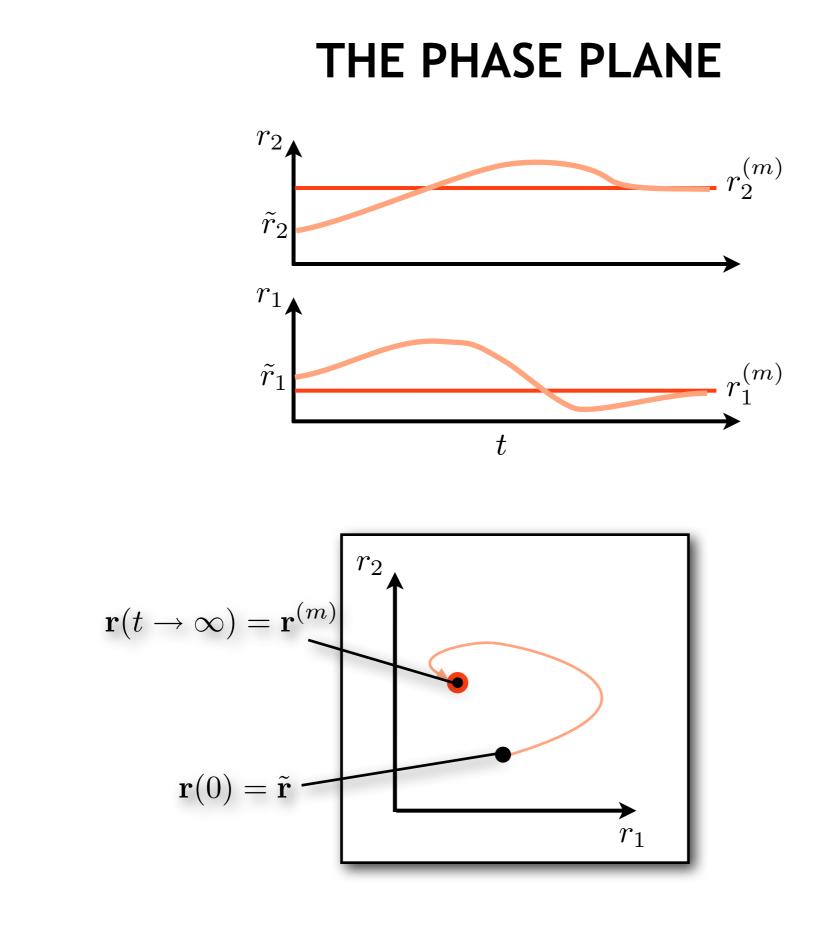


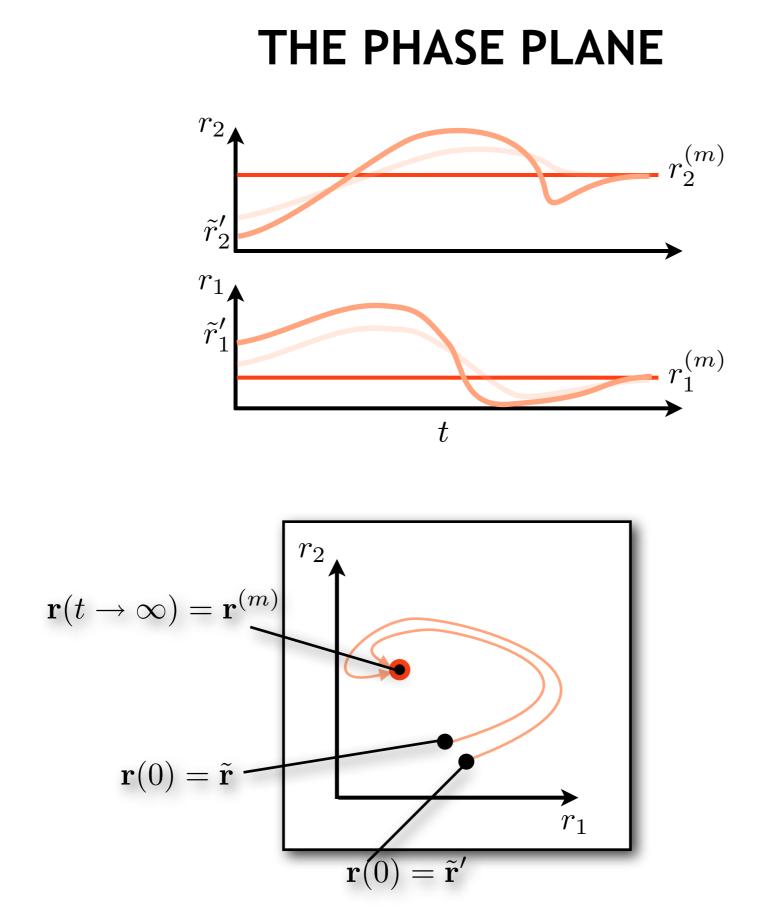
Máté Lengyel | Computational modelling of synaptic function MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012 http://www.eng.cam.ac.uk/~m.lengyel 7

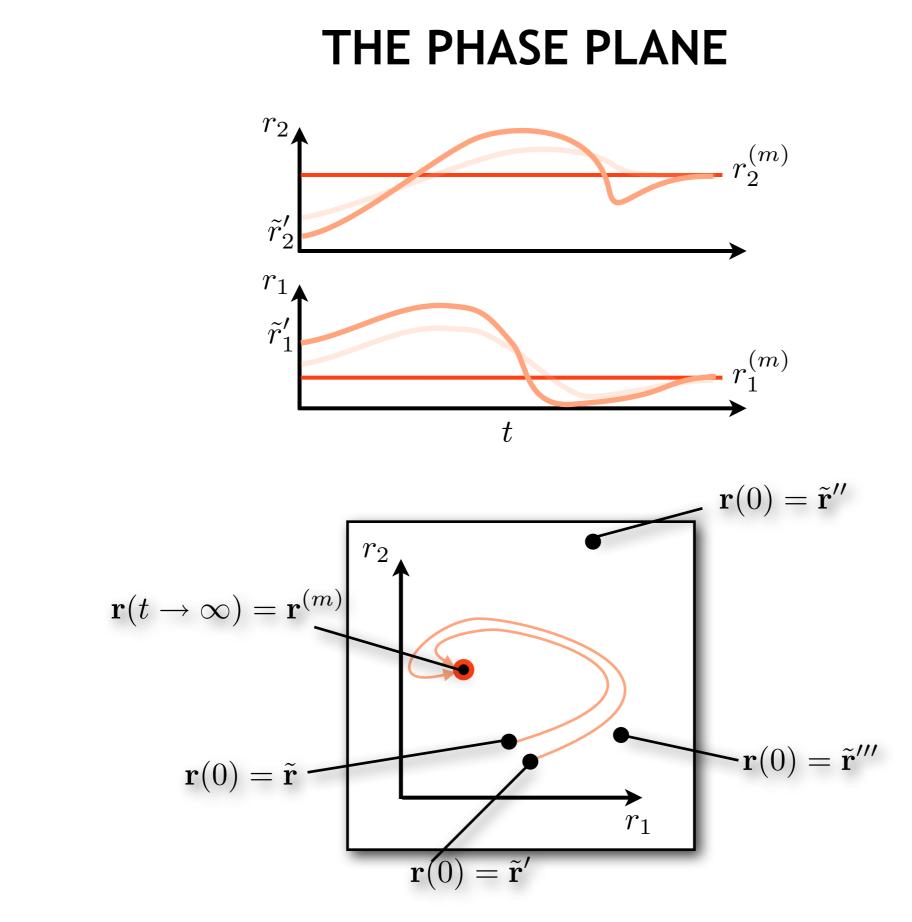


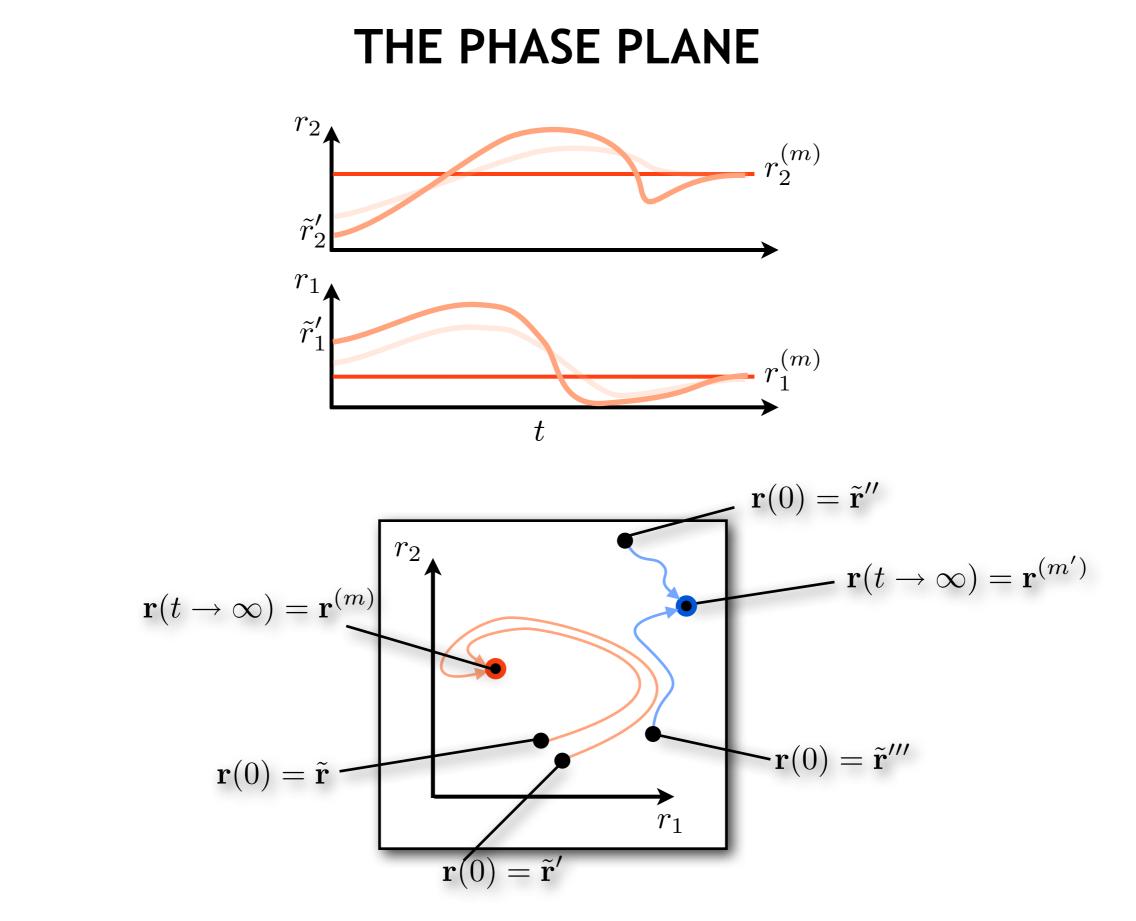


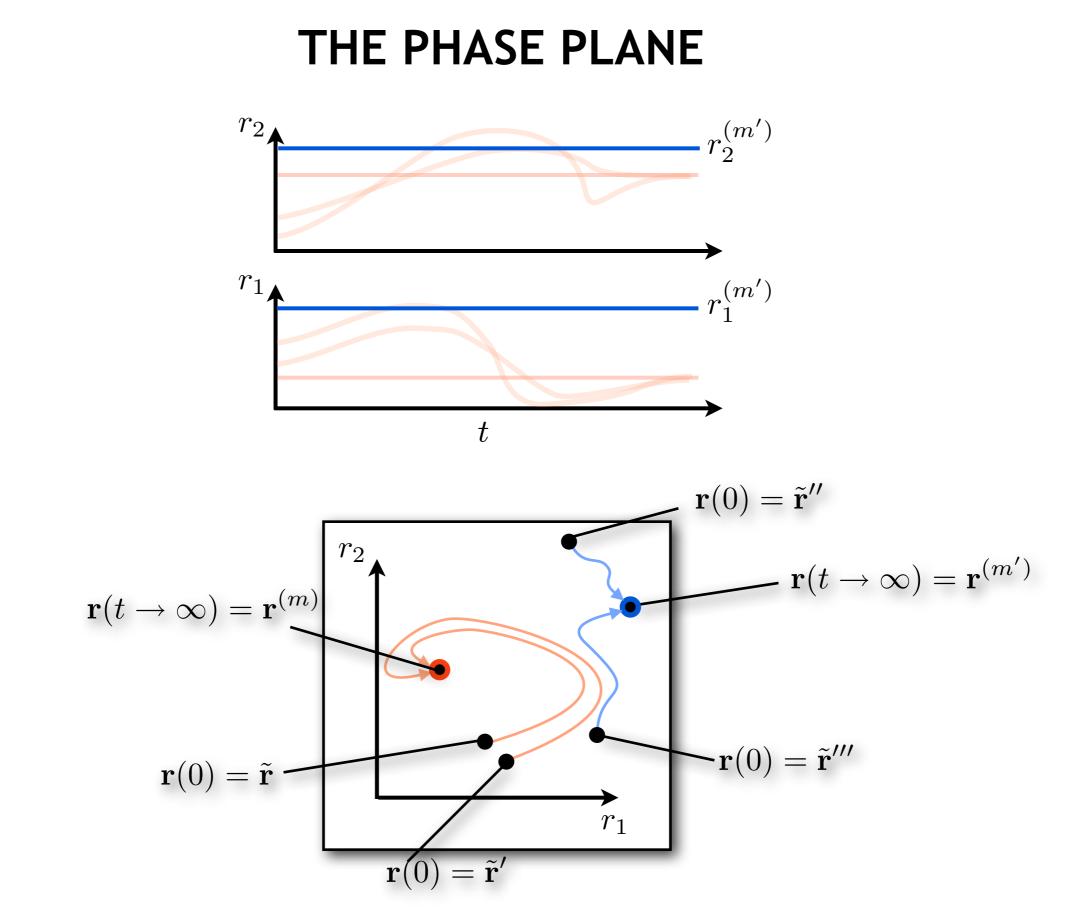
MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012 Máté Lengyel | Computational modelling of synaptic function http://www.eng.cam.ac.uk/~m.lengyel

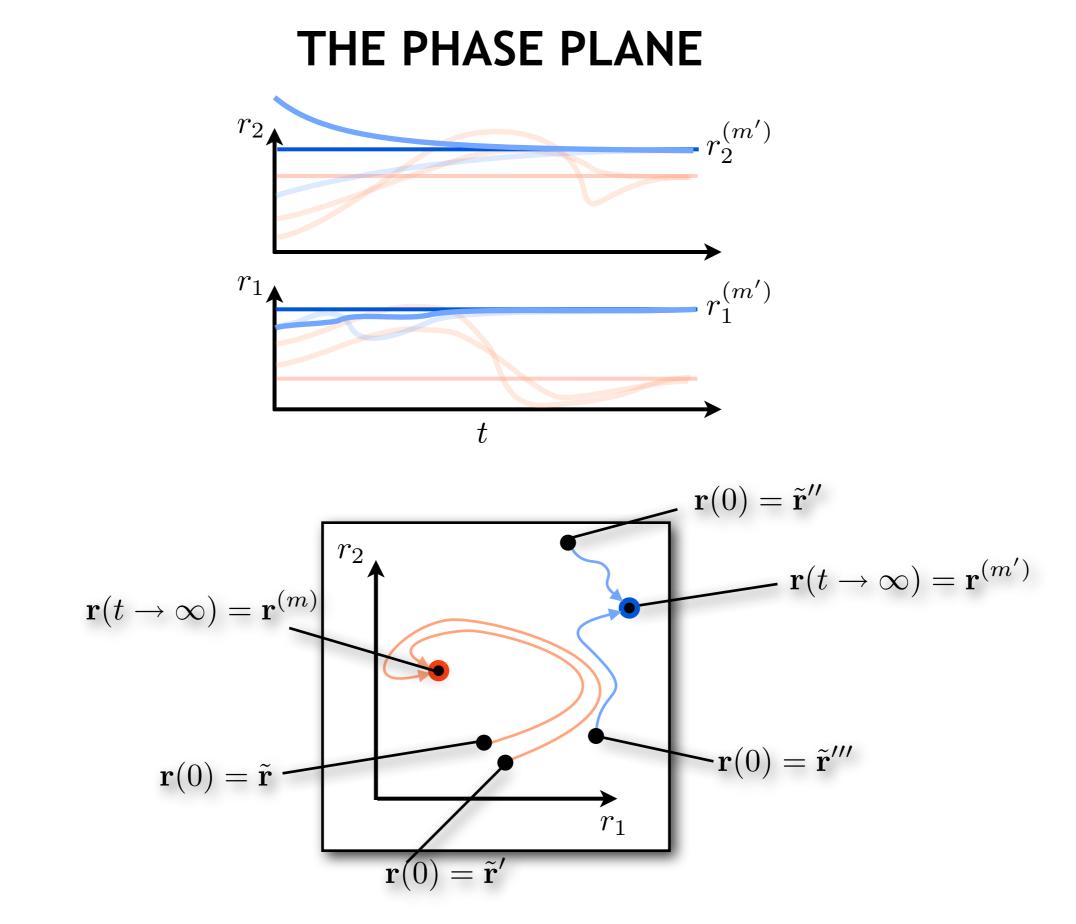












binary neurons

McCulloch & Pitts, 1943. A logical calculus of the ideas immanent in nervous activity.

recall: analogue neurons with a firing rate-based description

recall: analogue neurons with a firing rate-based description

$$\frac{dI_i}{dt} = -\frac{1}{\tau}I_i(t) + \sum_{j \neq i} W_{ij} r_j(t)$$

recall: analogue neurons with a firing rate-based description

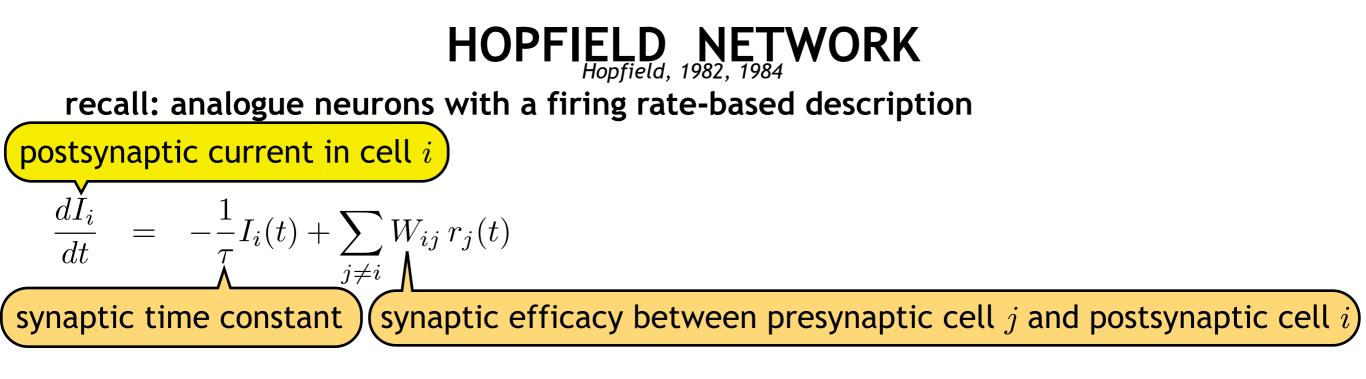
postsynaptic current in cell i

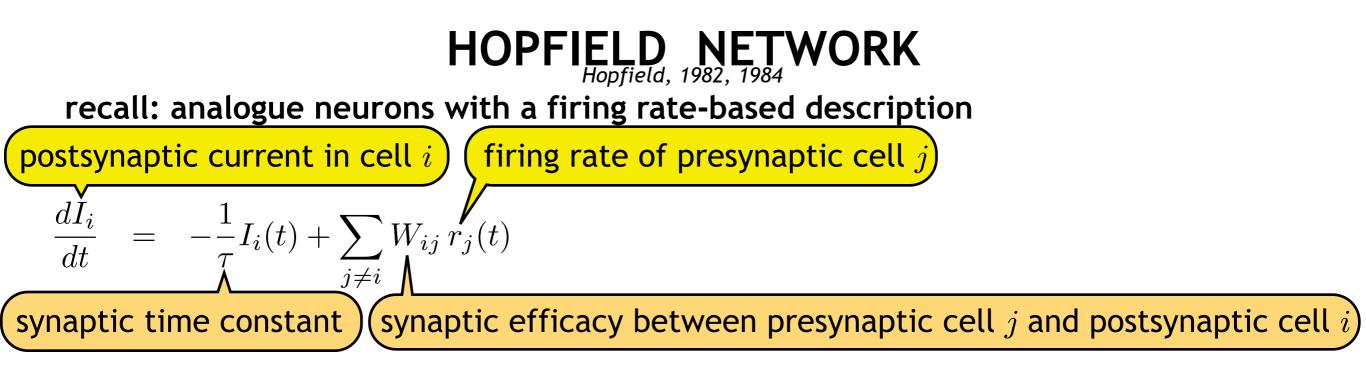
$$\frac{d\dot{I}_i}{dt} = -\frac{1}{\tau}I_i(t) + \sum_{j \neq i} W_{ij} r_j(t)$$

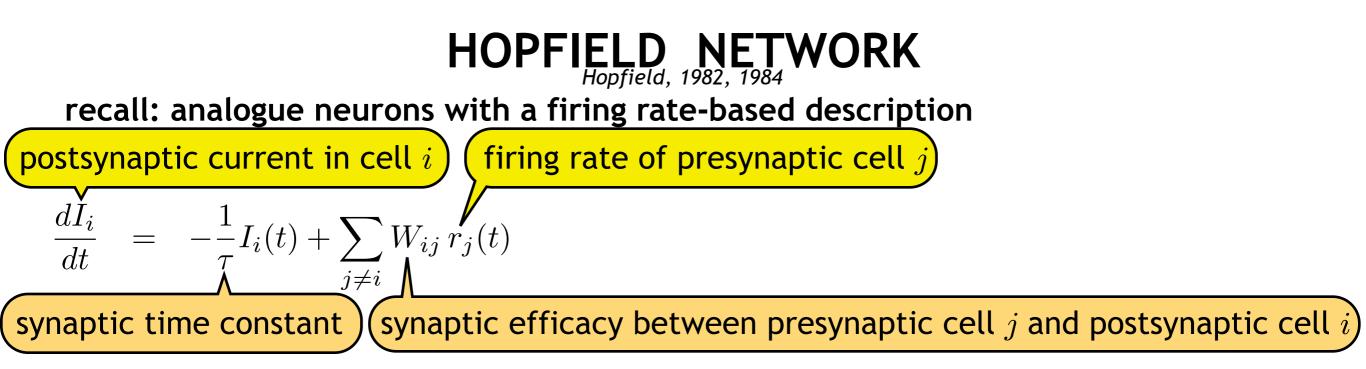
recall: analogue neurons with a firing rate-based description

postsynaptic current in cell i

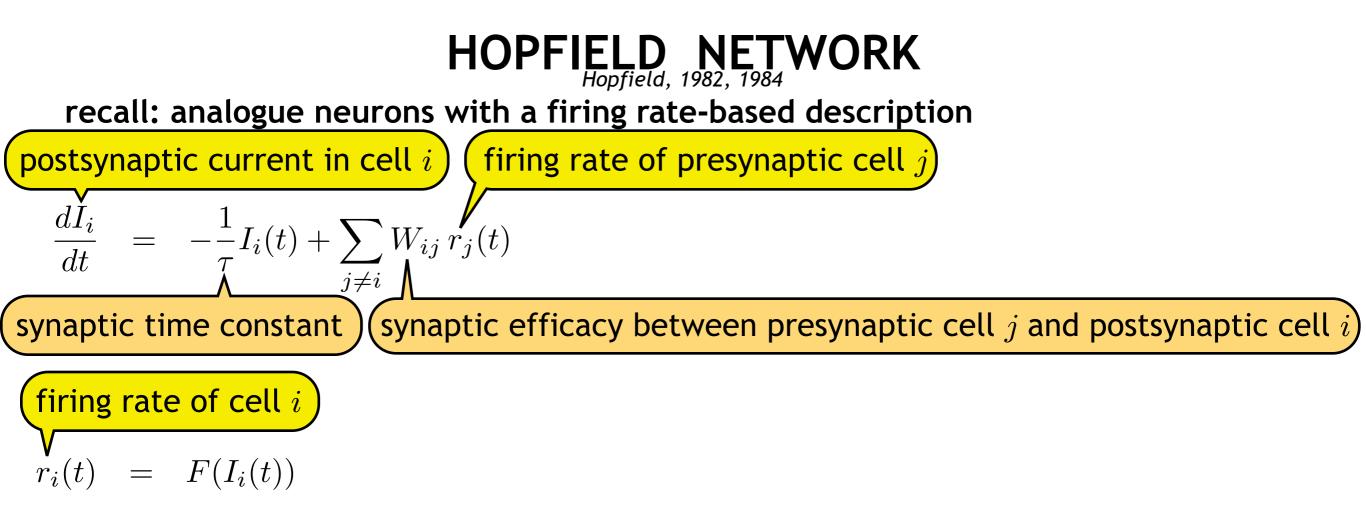
$$\frac{dI_{i}}{dt} = -\frac{1}{\tau}I_{i}(t) + \sum_{j \neq i} W_{ij} r_{j}(t)$$
synaptic time constant

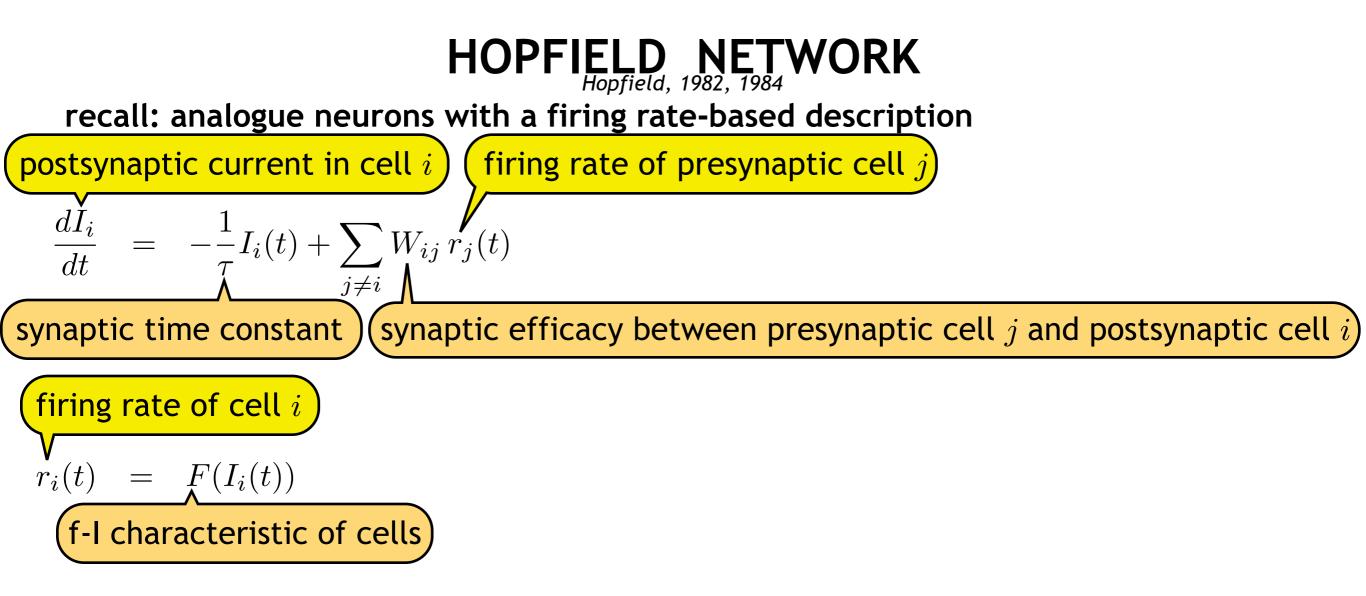


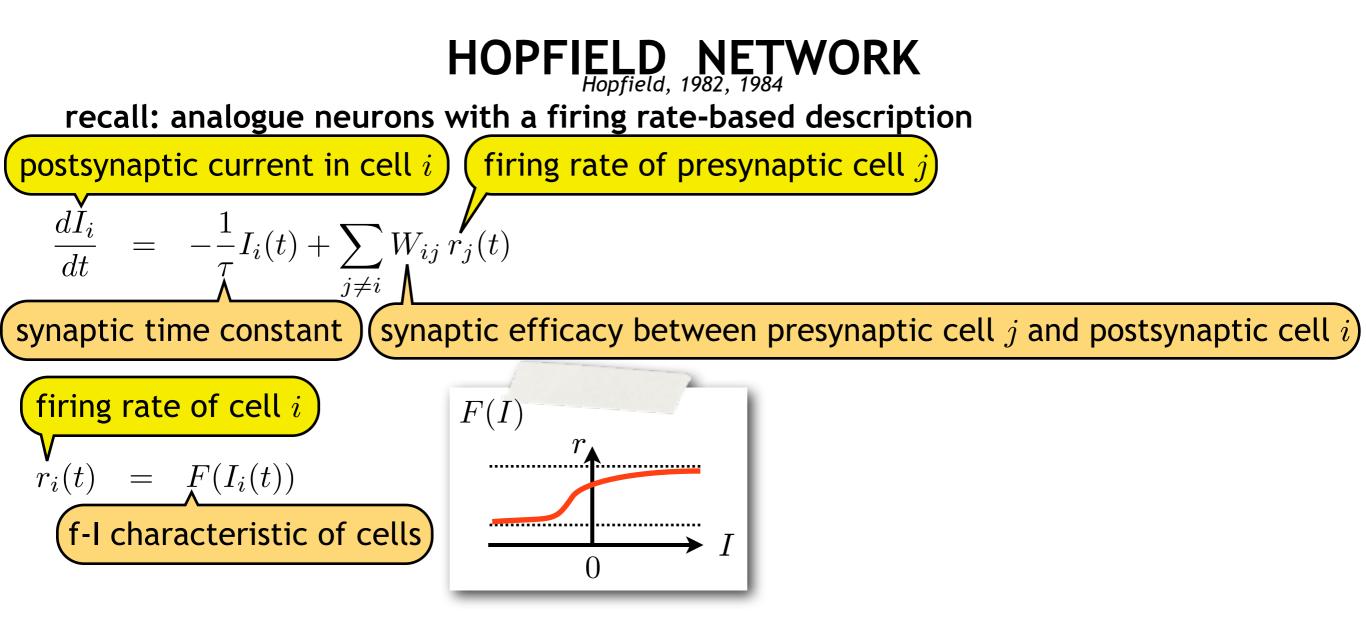


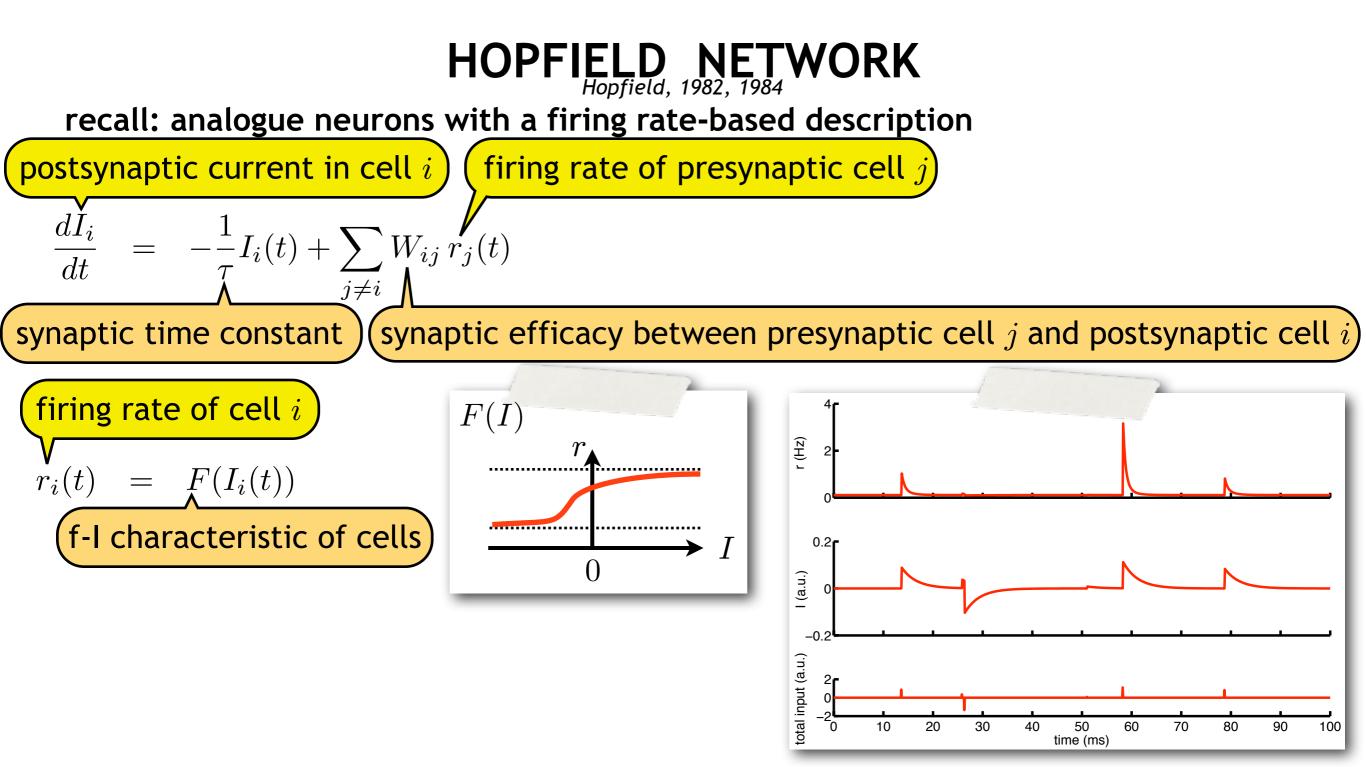


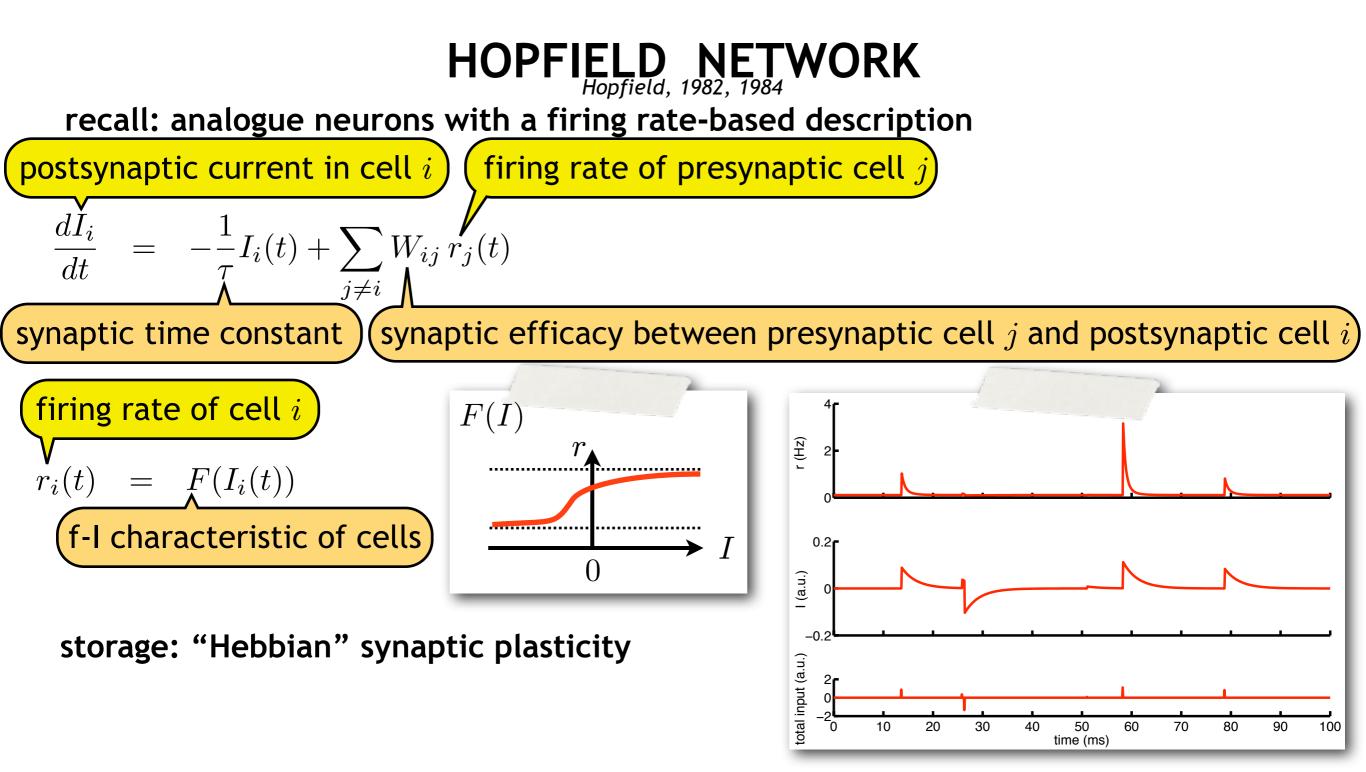
$$r_i(t) = F(I_i(t))$$

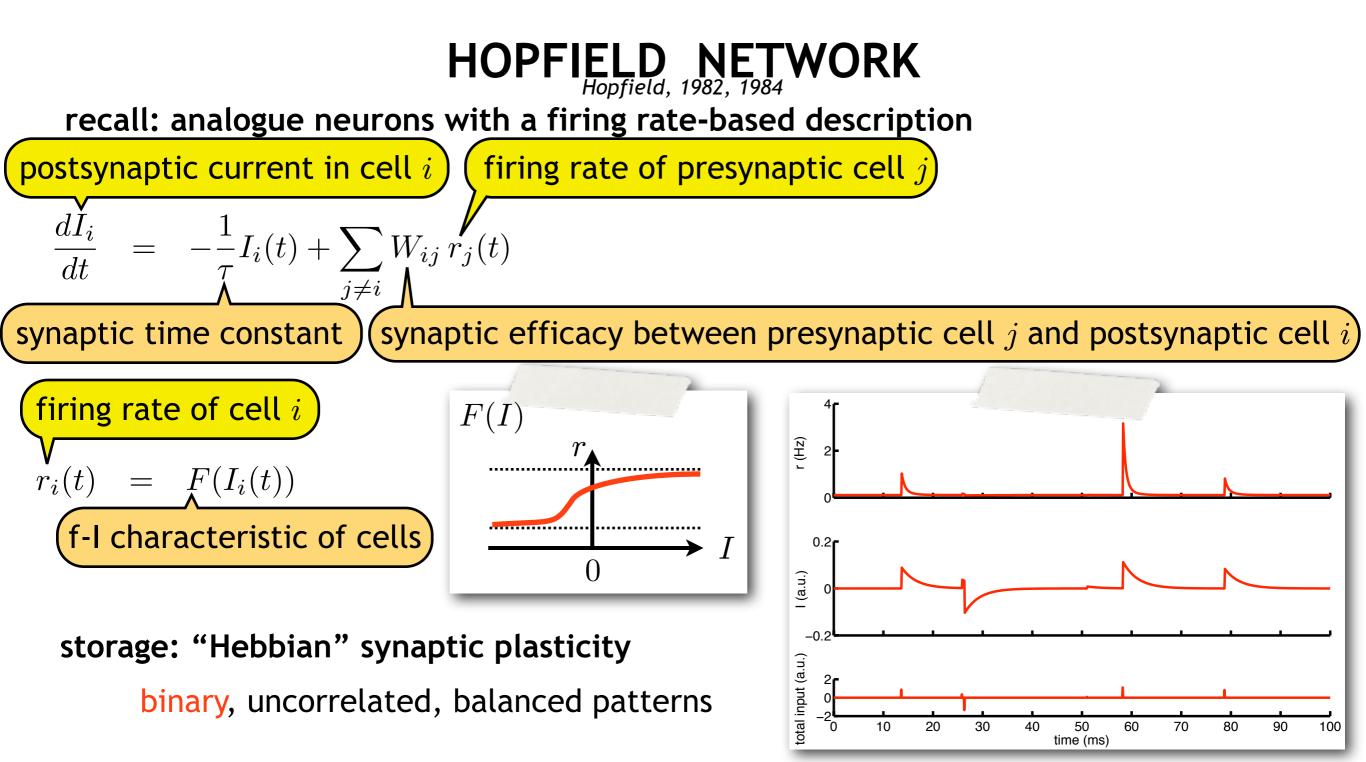


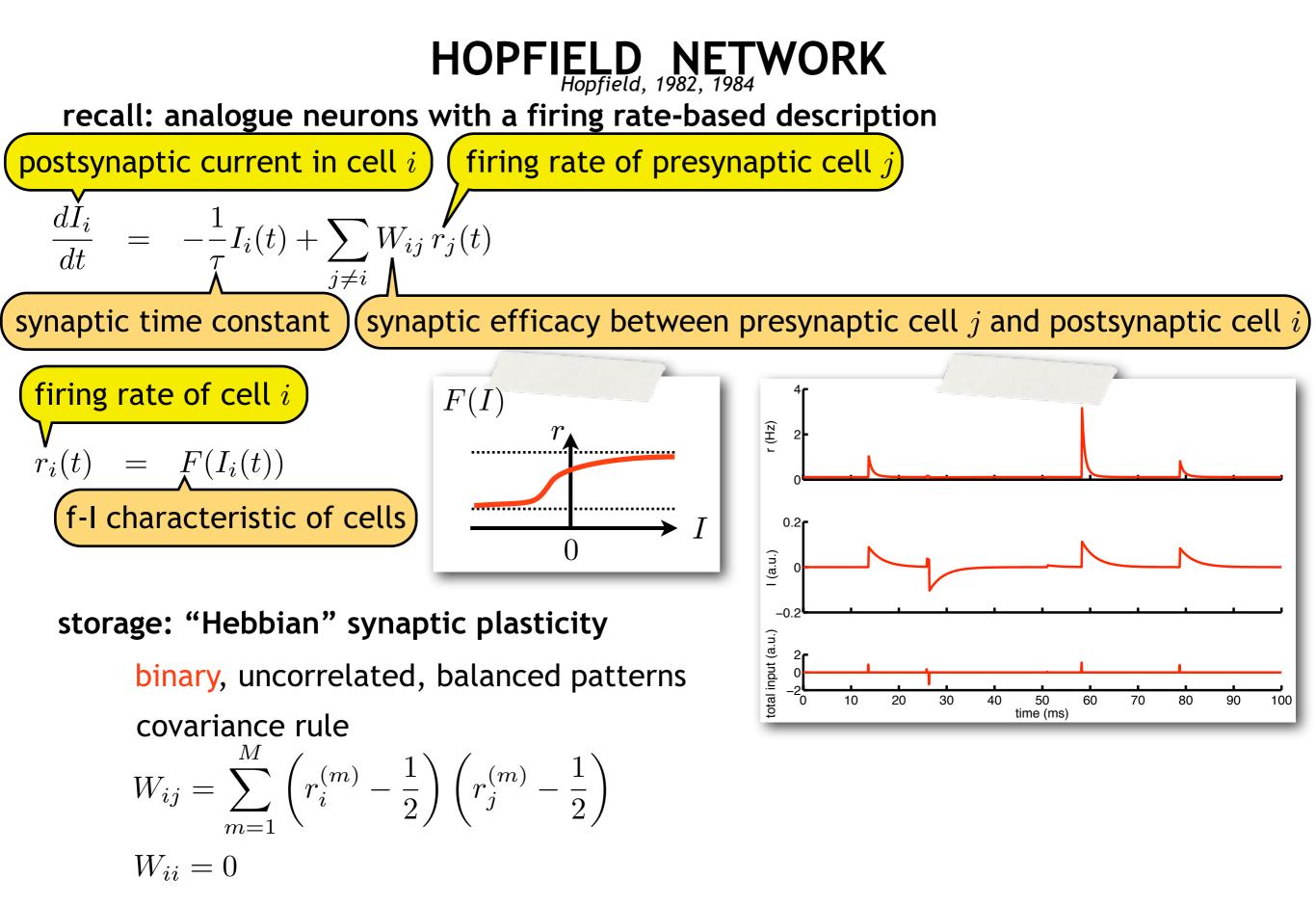


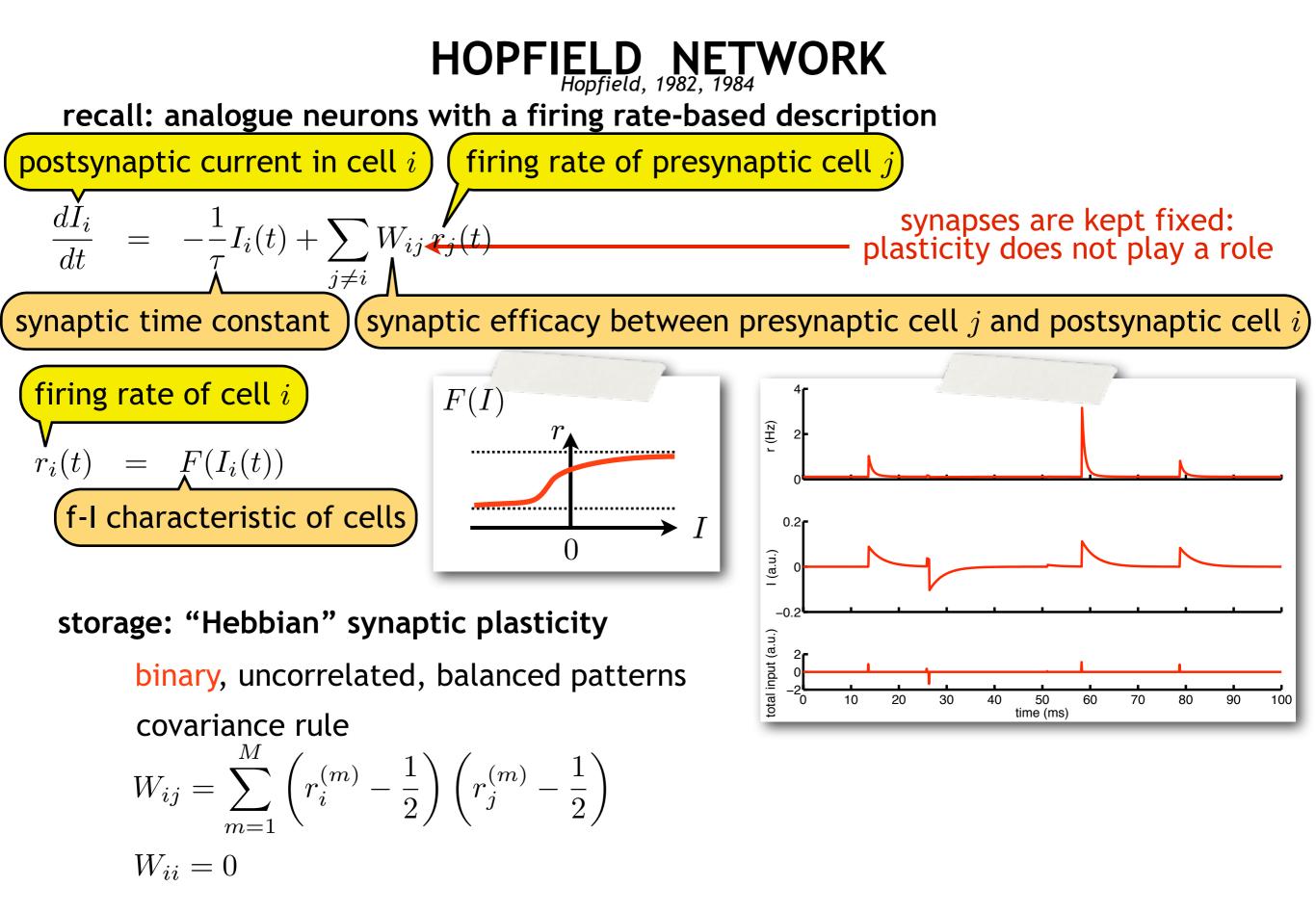


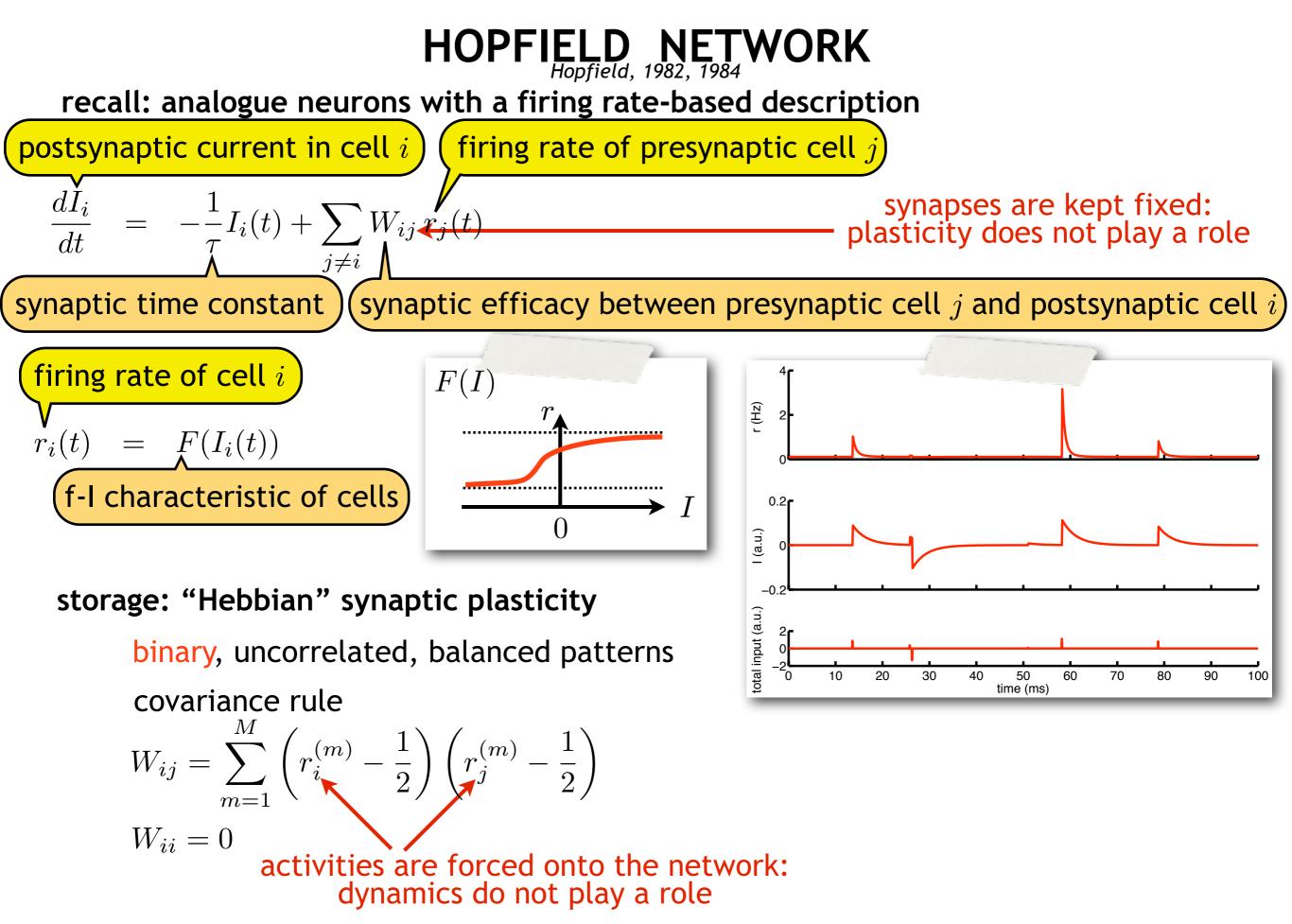












Máté Lengyel | Computational modelling of synaptic function MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012 http://www.eng.cam.ac.uk/~m.lengyel

- \rightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!

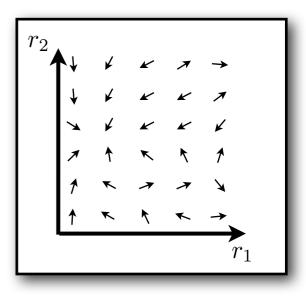
- \rightarrow equations for Hopfield network are like the equations describing 'spin glasses' \rightarrow same maths apply!
- 1. network dynamics have stable fixed points

- \rightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$

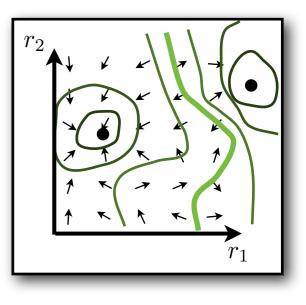
- \rightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$

- \rightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$
 - the landscape has finite depth (lower bounded) $E(\mathbf{r}) \geq 0$

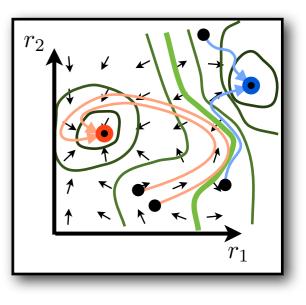
- ightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$
 - the landscape has finite depth (lower bounded) $E(\mathbf{r}) \geq 0$



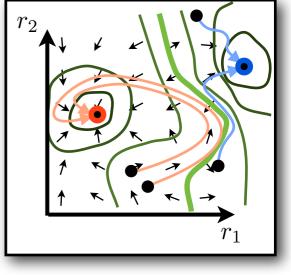
- ightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$
 - the landscape has finite depth (lower bounded) $E(\mathbf{r}) \ge 0$



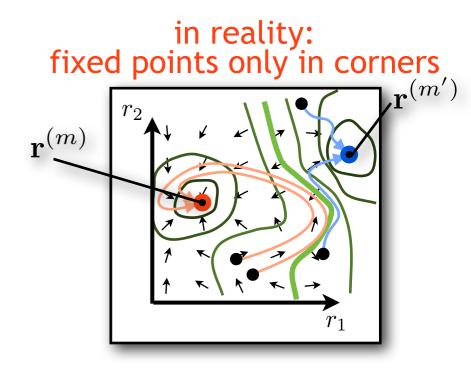
- \rightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$
 - the landscape has finite depth (lower bounded) $E(\mathbf{r}) \ge 0$



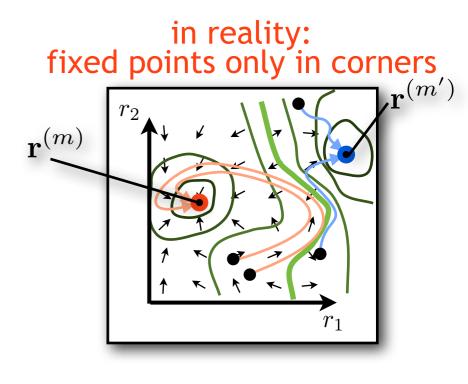
- \rightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$
 - the landscape has finite depth (lower bounded) $E(\mathbf{r}) \ge 0$



- \rightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$
 - the landscape has finite depth (lower bounded) $E(\mathbf{r}) \geq 0$
- 2. stored patterns are fixed points



- ightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$
 - the landscape has finite depth (lower bounded) $E(\mathbf{r}) \geq 0$
- stable?2. stored patterns are fixed points

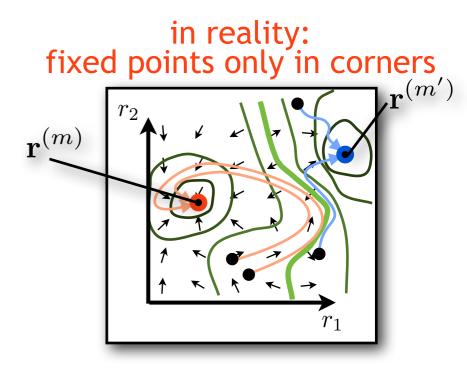


- \rightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$
 - the landscape has finite depth (lower bounded) $E(\mathbf{r}) \geq 0$

stable?2. stored patterns are fixed points

sources of recall errors:

• stored patterns are unstable fixed points



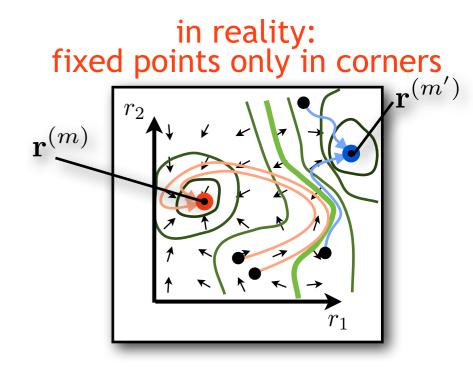
- \rightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$
 - the landscape has finite depth (lower bounded) $E(\mathbf{r}) \geq 0$

stable?

2. stored patterns are fixed points

sources of recall errors:

- stored patterns are unstable fixed points
- stored patterns are not fixed points



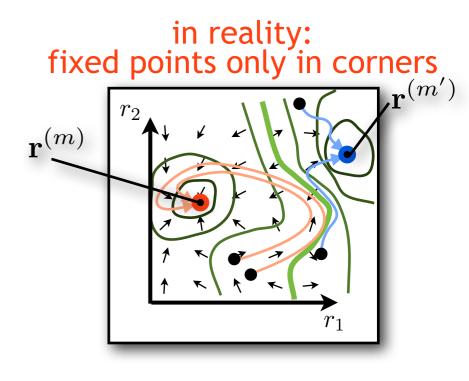
- \rightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$
 - the landscape has finite depth (lower bounded) $E(\mathbf{r}) \geq 0$

stable?

2. stored patterns are fixed points on average

sources of recall errors:

- stored patterns are unstable fixed points
- stored patterns are not fixed points



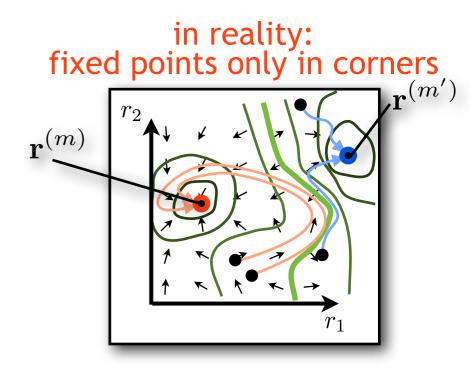
- \rightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$
 - the landscape has finite depth (lower bounded) $E(\mathbf{r}) \geq 0$

stable?

2. stored patterns are fixed points on average

sources of recall errors:

- stored patterns are unstable fixed points
- stored patterns are not fixed points
- spurious attractors



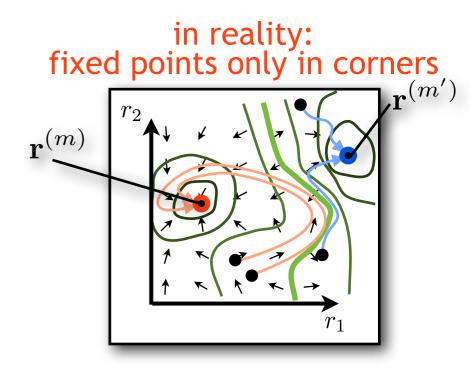
- \rightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$
 - the landscape has finite depth (lower bounded) $E(\mathbf{r}) \geq 0$

stable?

2. stored patterns are fixed points on average (other stable fixed points?)

sources of recall errors:

- stored patterns are unstable fixed points
- stored patterns are not fixed points
- spurious attractors



- \rightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$
 - the landscape has finite depth (lower bounded) $E(\mathbf{r}) \geq 0$

stable?

 stored patterns are fixed points on average (other stable fixed points?)

sources of recall errors:

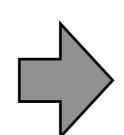
- stored patterns are unstable fixed points
- stored patterns are not fixed points
- spurious attractors

 $\mathbf{r}^{(m)}$

in reality:

fixed points only in corners

possible to analyse mathematically: capacity, phase transitions, etc.



- ightarrow equations for Hopfield network are like the equations describing 'spin glasses'
- \rightarrow same maths apply!
- 1. network dynamics have stable fixed points if we can show that there exists an 'landscape' (energy or Lyapunov) function $E(\mathbf{r})$
 - the dynamics of r are such that the it never moves upwards on the landscape $E(\mathbf{r}(t + \Delta t)) \leq E(\mathbf{r}(t))$
 - the landscape has finite depth (lower bounded) $E(\mathbf{r}) \geq 0$

stable?

2. stored patterns are fixed points on average (other stable fixed points?)

sources of recall errors:

- stored patterns are unstable fixed points
- stored patterns are not fixed points
- spurious attractors

possible to analyse mathematically:

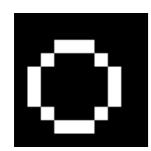
in reality: fixed points only in corners $\mathbf{r}^{(m)}$ $\mathbf{r}^{(m')}$ $\mathbf{r}^{(m')}$ $\mathbf{r}^{(m')}$

e.g. capacity is determined by

capacity, phase transitions, etc.

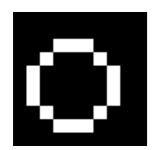
 $\frac{\rm number \ of \ stored \ patterns}{\rm number \ of \ synapses/cell}$

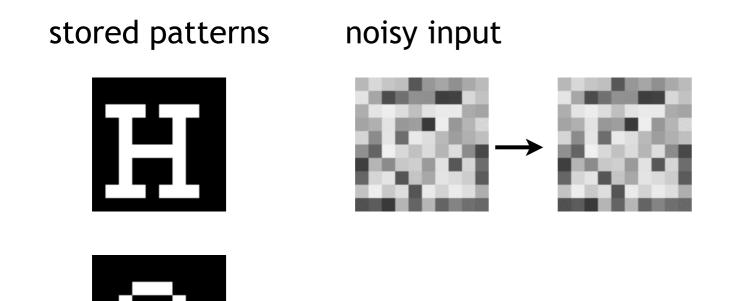
stored patterns

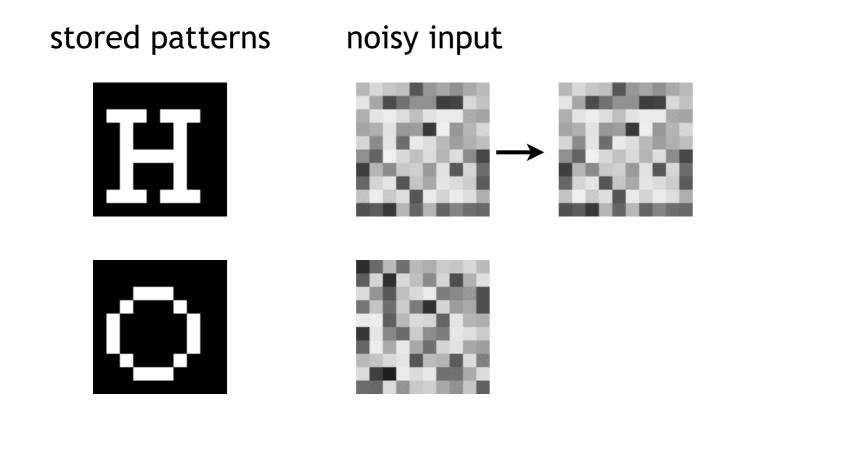


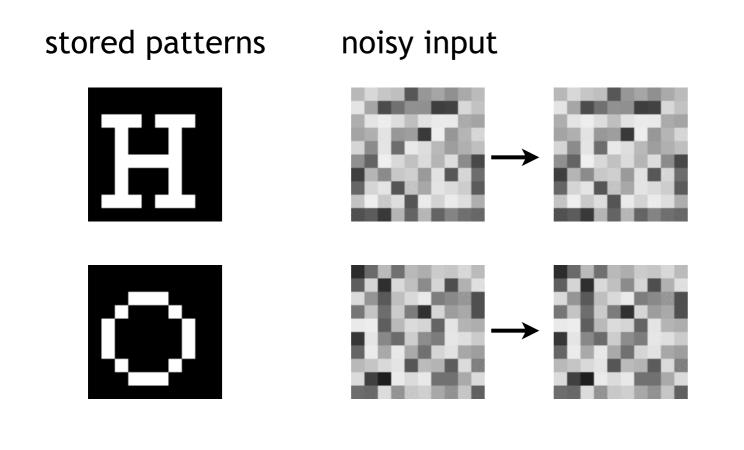
stored patterns

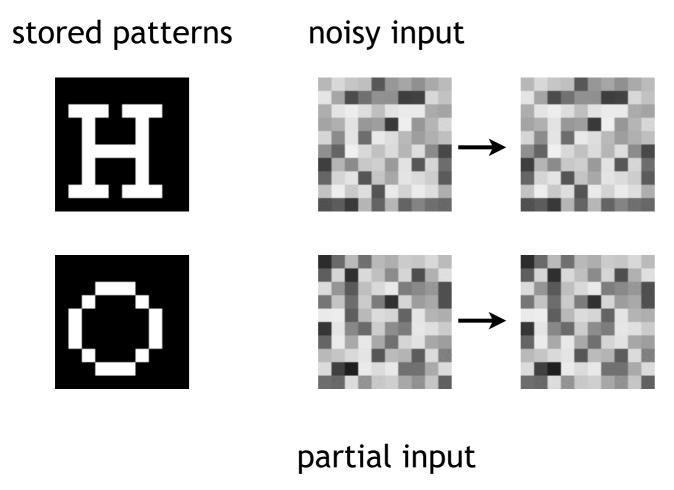
noisy input

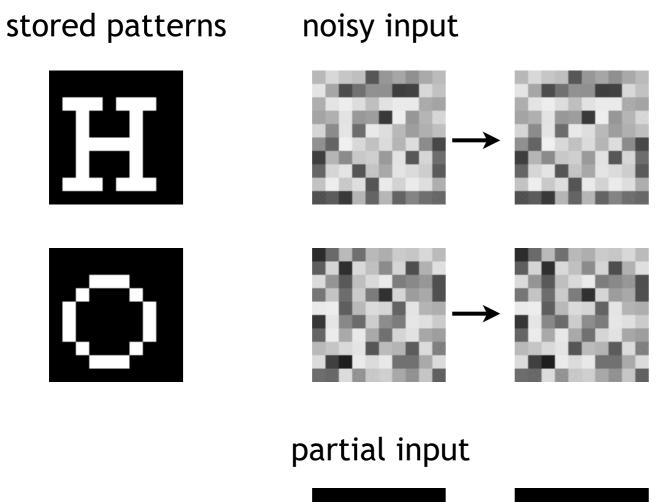


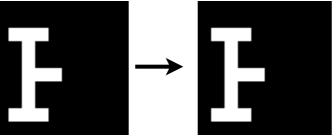


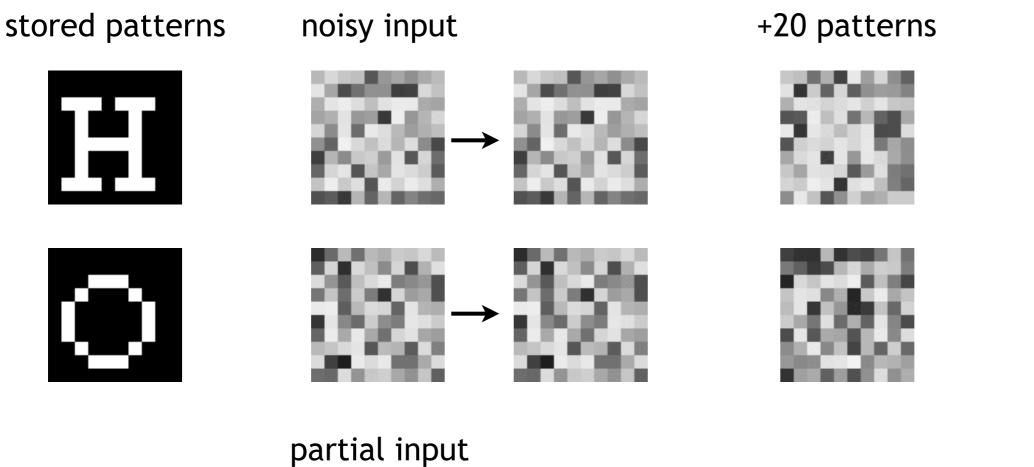




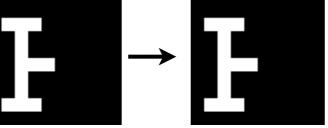


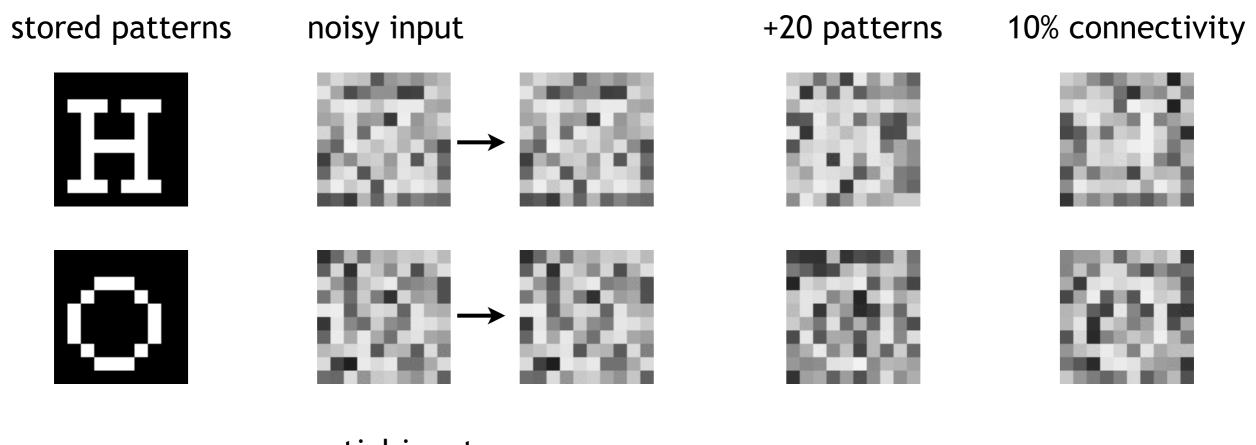




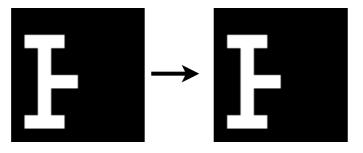


partial input





partial input



the Hopfieldian paradigm

• memories are represented as *distributed* patterns of activity

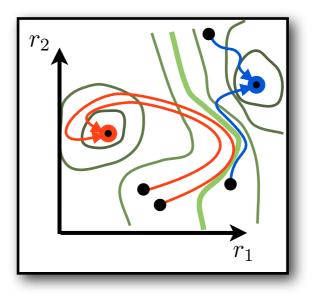
- memories are represented as *distributed* patterns of activity
- assume particular *learning rule*

- memories are represented as *distributed* patterns of activity
- assume particular *learning rule*
- assume particular *network dynamics*

- memories are represented as distributed patterns of activity
- assume particular *learning rule*
- assume particular *network dynamics*
- show that the two together work appropriately → energy function

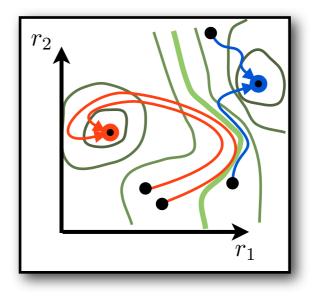
- memories are represented as *distributed* patterns of activity
- assume particular *learning rule*
- assume particular *network dynamics*
- show that the two together work appropriately → energy function
 - stored patterns correspond to (point) attractors

- memories are represented as distributed patterns of activity
- assume particular *learning rule*
- assume particular *network dynamics*
- show that the two together work appropriately → energy function
 - stored patterns correspond to (point) attractors



the Hopfieldian paradigm

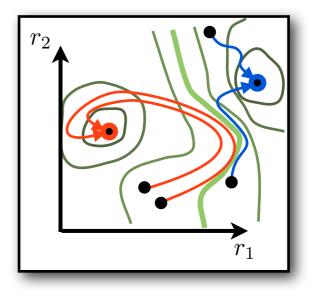
- memories are represented as distributed patterns of activity
- assume particular *learning rule*
- assume particular *network dynamics*
- show that the two together work appropriately → energy function
 - stored patterns correspond to (point) attractors



challenges:

the Hopfieldian paradigm

- memories are represented as distributed patterns of activity
- assume particular *learning rule*
- assume particular *network dynamics*
- show that the two together work appropriately → energy function
 - stored patterns correspond to (point) attractors

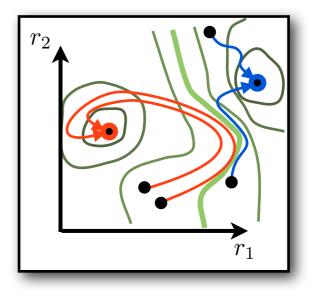


challenges:

 general theory (different learning rules, network dynamics) : hard to find the corresponding energy function

the Hopfieldian paradigm

- memories are represented as distributed patterns of activity
- assume particular learning rule
- assume particular *network dynamics*
- show that the two together work appropriately → energy function
 - stored patterns correspond to (point) attractors

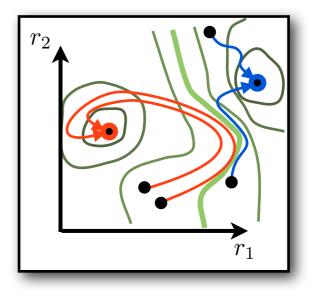


challenges:

- general theory (different learning rules, network dynamics) : hard to find the corresponding energy function
- analogue-valued memories

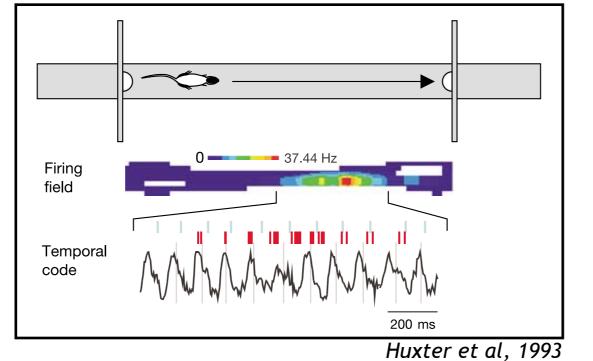
the Hopfieldian paradigm

- memories are represented as distributed patterns of activity
- assume particular learning rule
- assume particular *network dynamics*
- show that the two together work appropriately → energy function
 - stored patterns correspond to (point) attractors

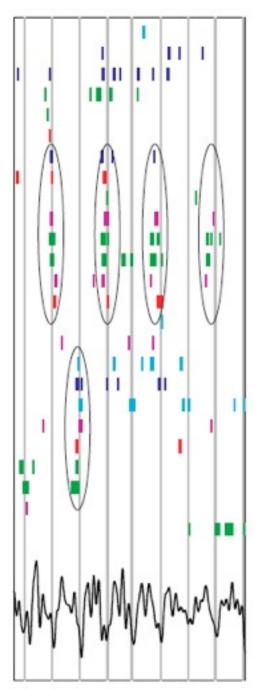


challenges:

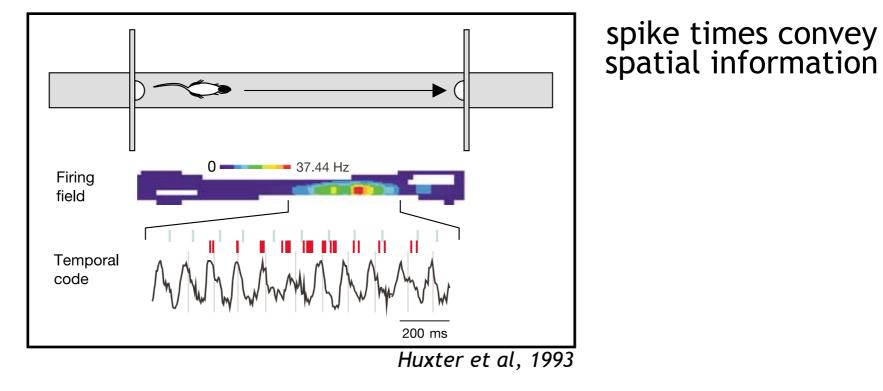
- general theory (different learning rules, network dynamics) : hard to find the corresponding energy function
- analogue-valued memories
- spike timings, oscillations



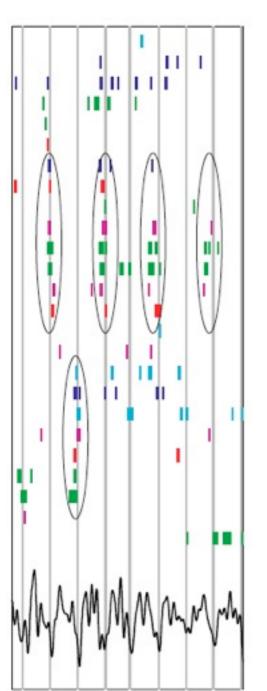
spike times convey spatial information



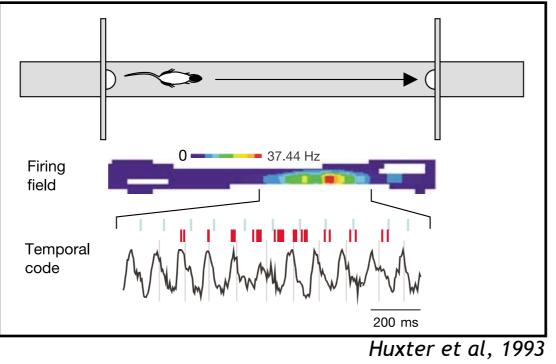
Harris & al, 2003



spatio-temporal firing patterns consistently reappear during awake behavior

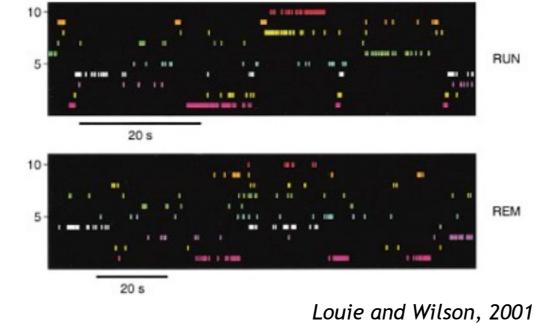


Harris & al, 2003

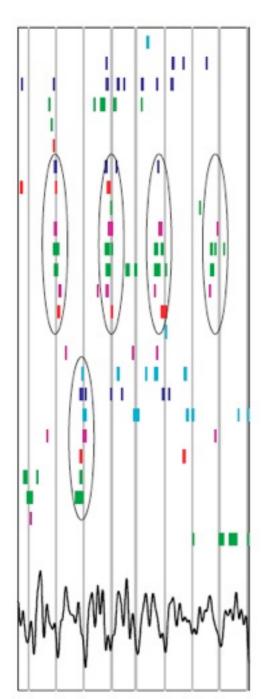


spike times convey spatial information

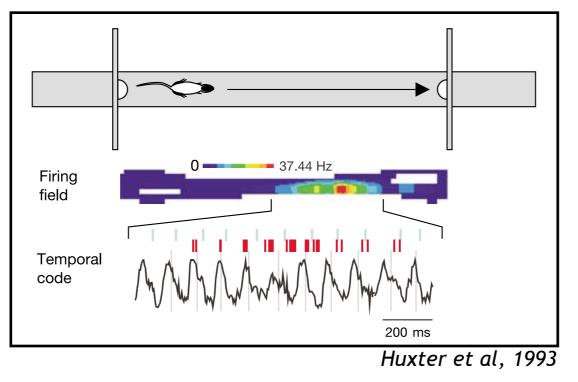
spatio-temporal firing patterns consistently reappear during awake behavior ... and sleep



Máté Lengyel | Computational modelling of synaptic function MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012 http://www.eng.cam.ac.uk/~m.lengyel 12



Harris & al, 2003



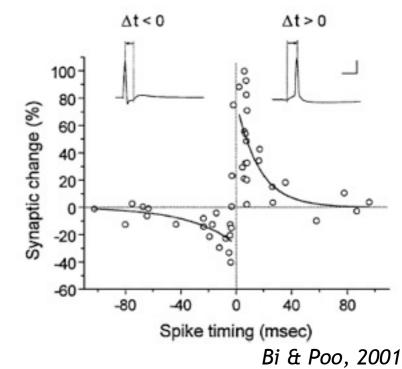
spatio-temporal firing patterns consistently reappear during awake behavior ... and s

20 s

20 s

10

spike times convey spatial information



Máté Lengyel | Computational modelling of synaptic function

MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

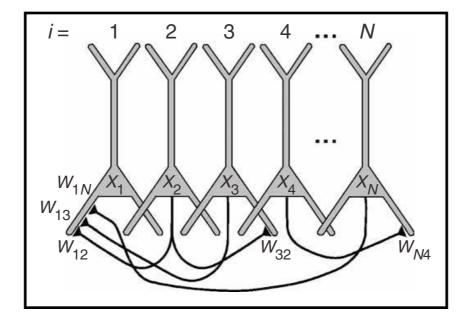
Louie and Wilson, 2001

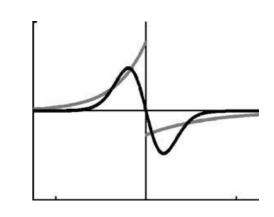
... and sleep

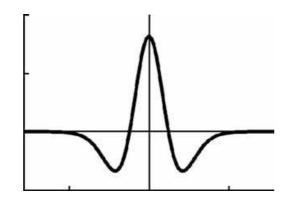
RUN

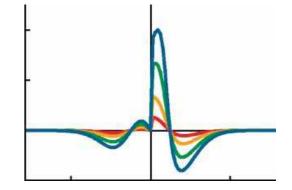
REM

MEMORY RETRIEVAL AS PROBABILISTIC INFERENCE

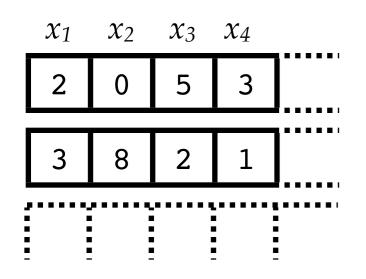


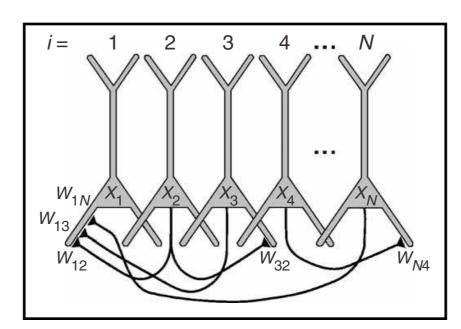


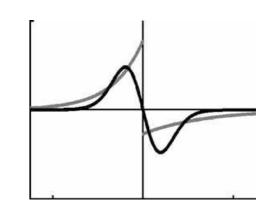


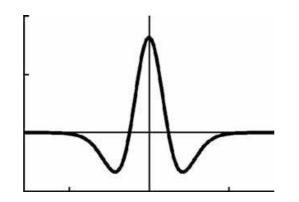


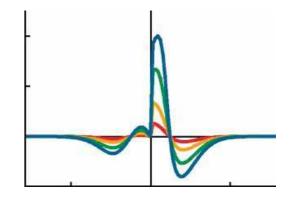
stored activities



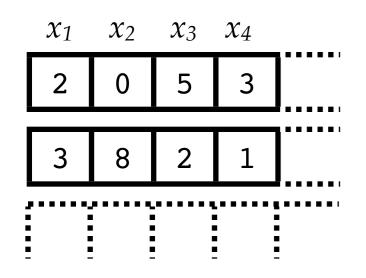


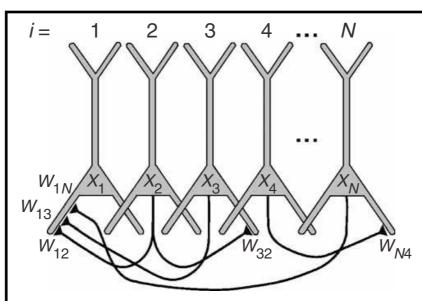




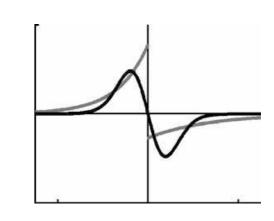


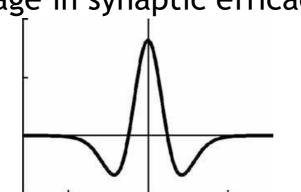
stored activities

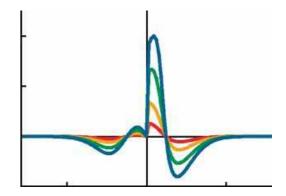




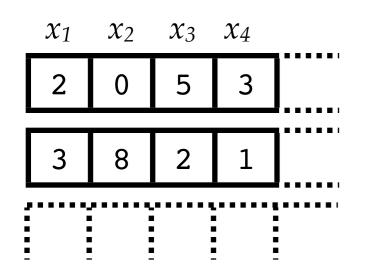
storage in synaptic efficacies

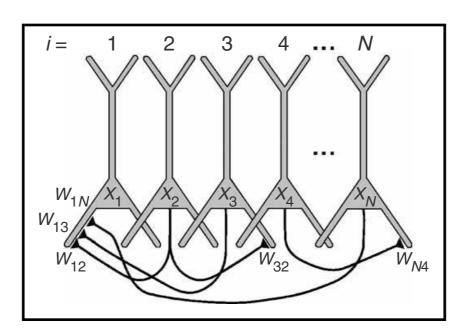




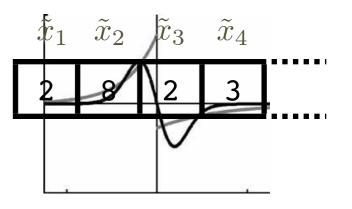


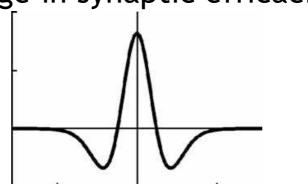
stored activities

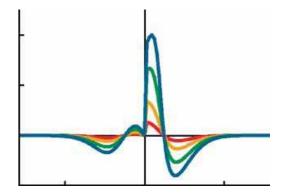


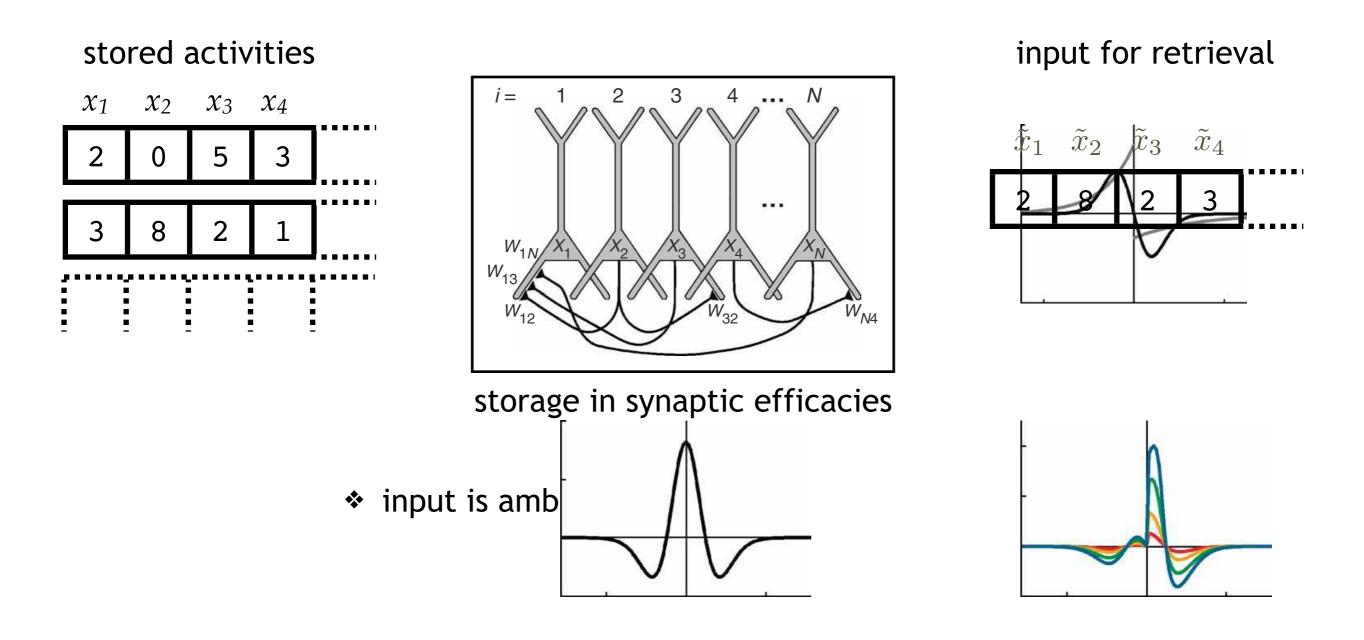


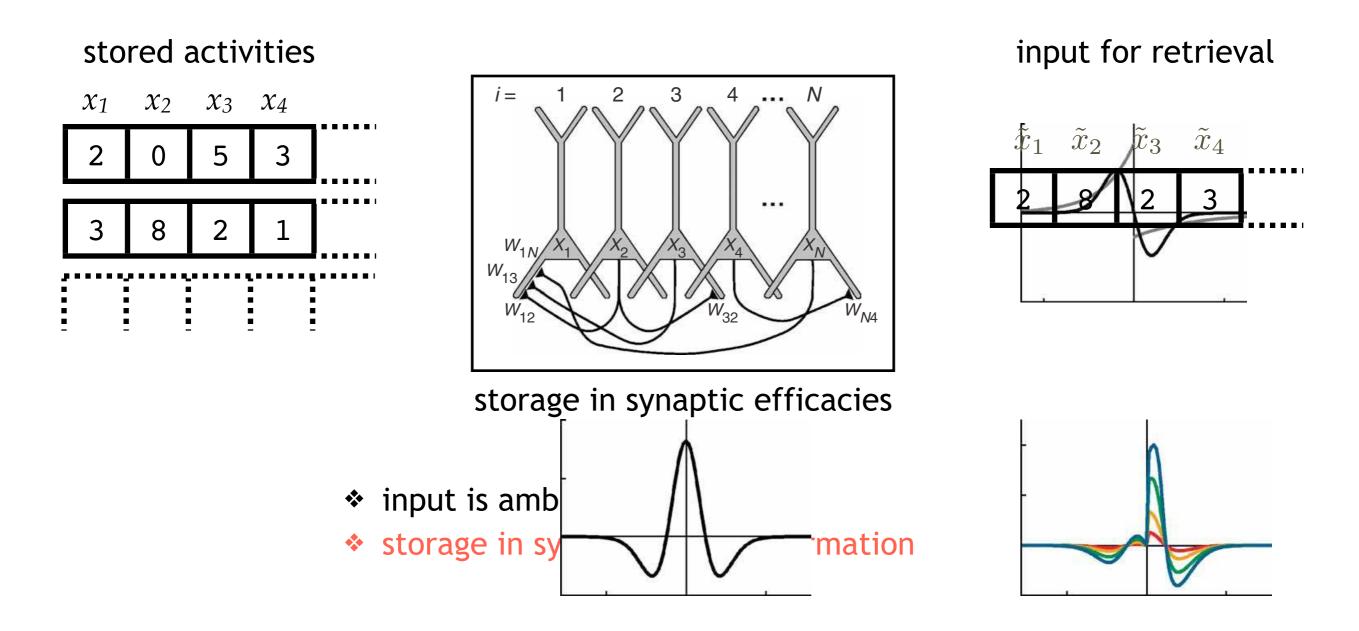
storage in synaptic efficacies

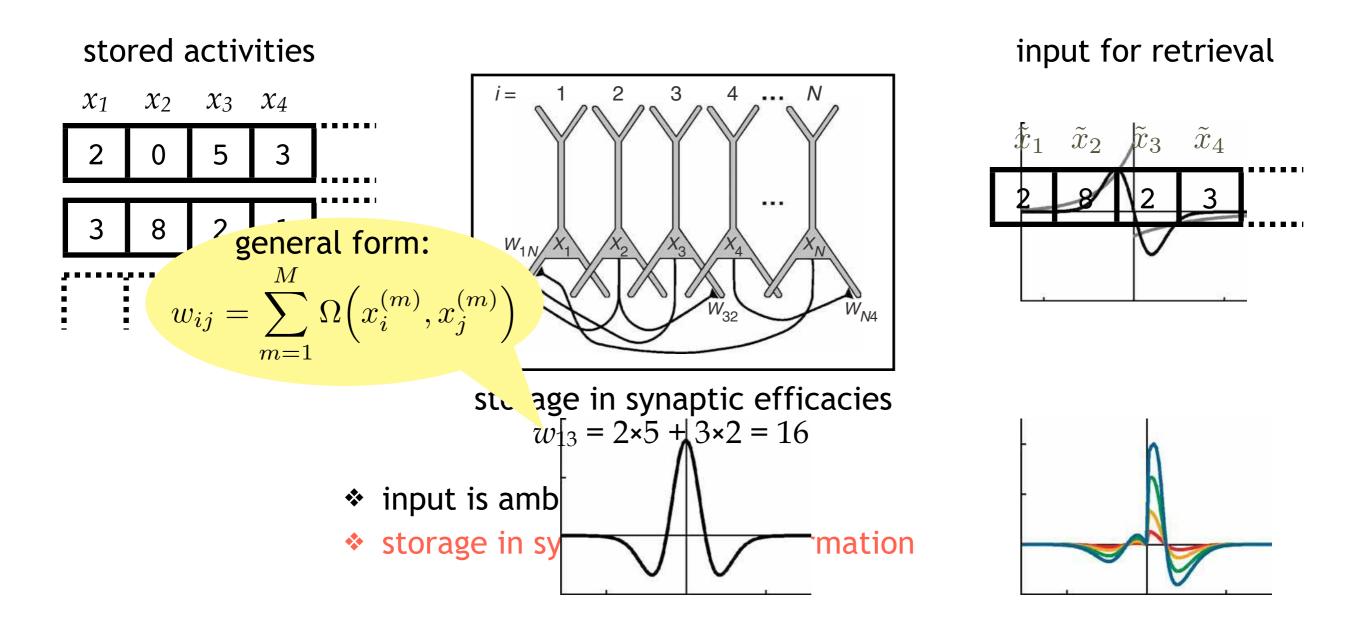


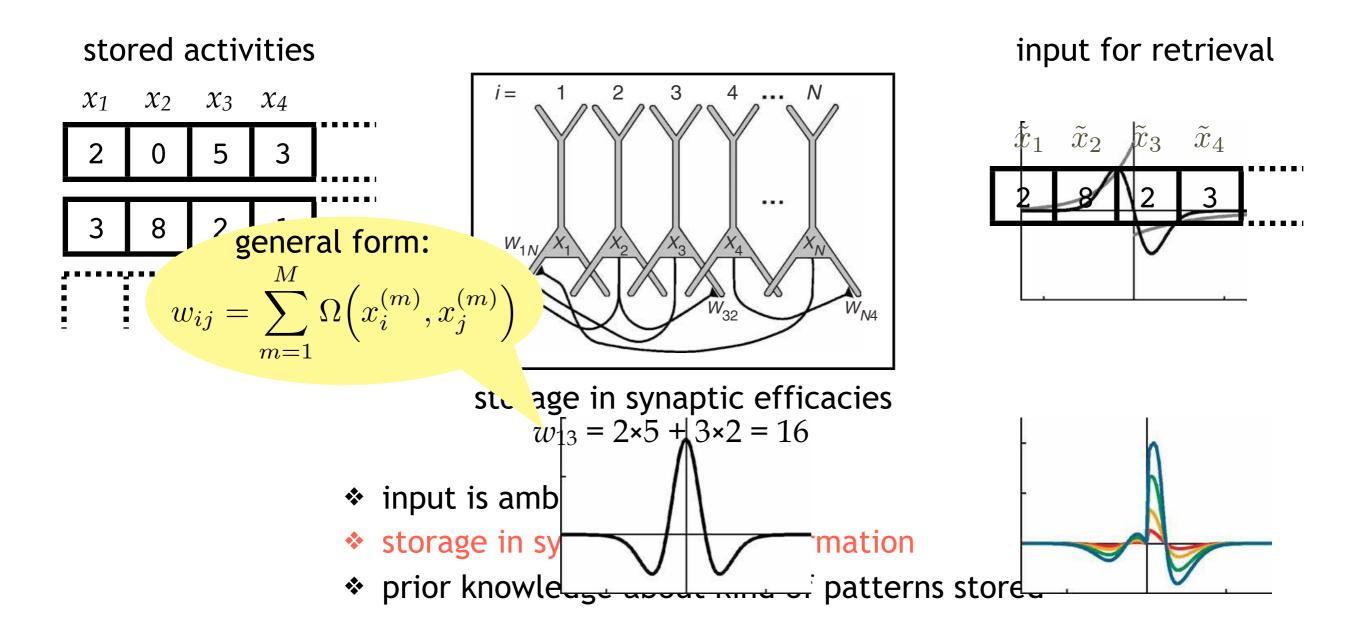


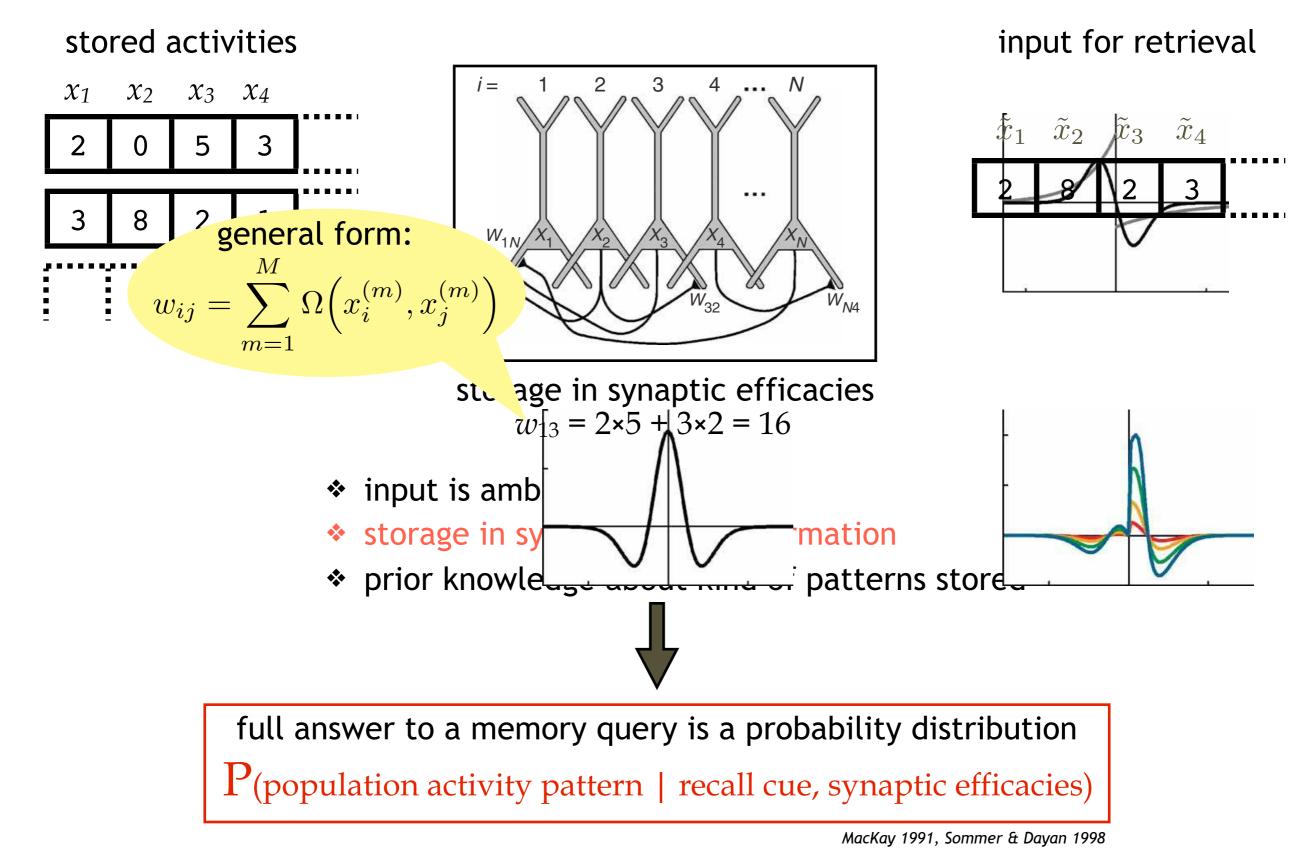












UNDERSTANDING THE POSTERIOR

P(population activity pattern | recall cue, synaptic efficacies)

UNDERSTANDING THE POSTERIOR $P(\mathbf{x}|\tilde{\mathbf{x}}, \mathbf{W})$

$\begin{array}{l} \textbf{UNDERSTANDING THE POSTERIOR} \\ P(\mathbf{x}|\tilde{\mathbf{x}},\mathbf{W}) \, \propto \, P(\mathbf{x}) \, \ P(\tilde{\mathbf{x}}|\mathbf{x}) \, \ P(\mathbf{W}|\mathbf{x}) \end{array}$

UNDERSTANDING THE POSTERIOR $P(\mathbf{x}|\tilde{\mathbf{x}}, \mathbf{W}) \propto P(\mathbf{x}) P(\tilde{\mathbf{x}}|\mathbf{x}) P(\mathbf{W}|\mathbf{x})$

the probability that pattern \mathbf{x} is chosen to be stored

 $P(\mathbf{x})$

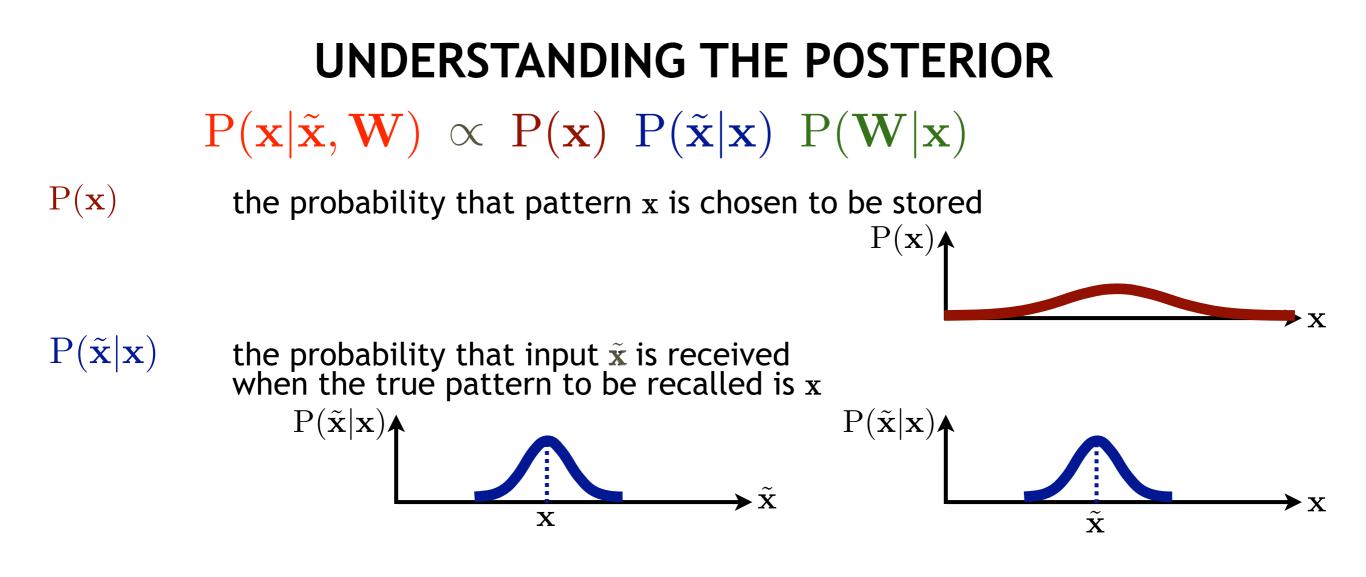
$\begin{array}{l} \textbf{UNDERSTANDING THE POSTERIOR} \\ P(\textbf{x}|\tilde{\textbf{x}},\textbf{W}) \propto P(\textbf{x}) \ P(\tilde{\textbf{x}}|\textbf{x}) \ P(\textbf{W}|\textbf{x}) \\ P(\textbf{x}) & \text{the probability that pattern } \textbf{x} \text{ is chosen to be stored} \\ P(\tilde{\textbf{x}}|\textbf{x}) & \text{the probability that input } \tilde{\textbf{x}} \text{ is received} \\ \text{when the true pattern to be recalled is } \textbf{x} \end{array}$

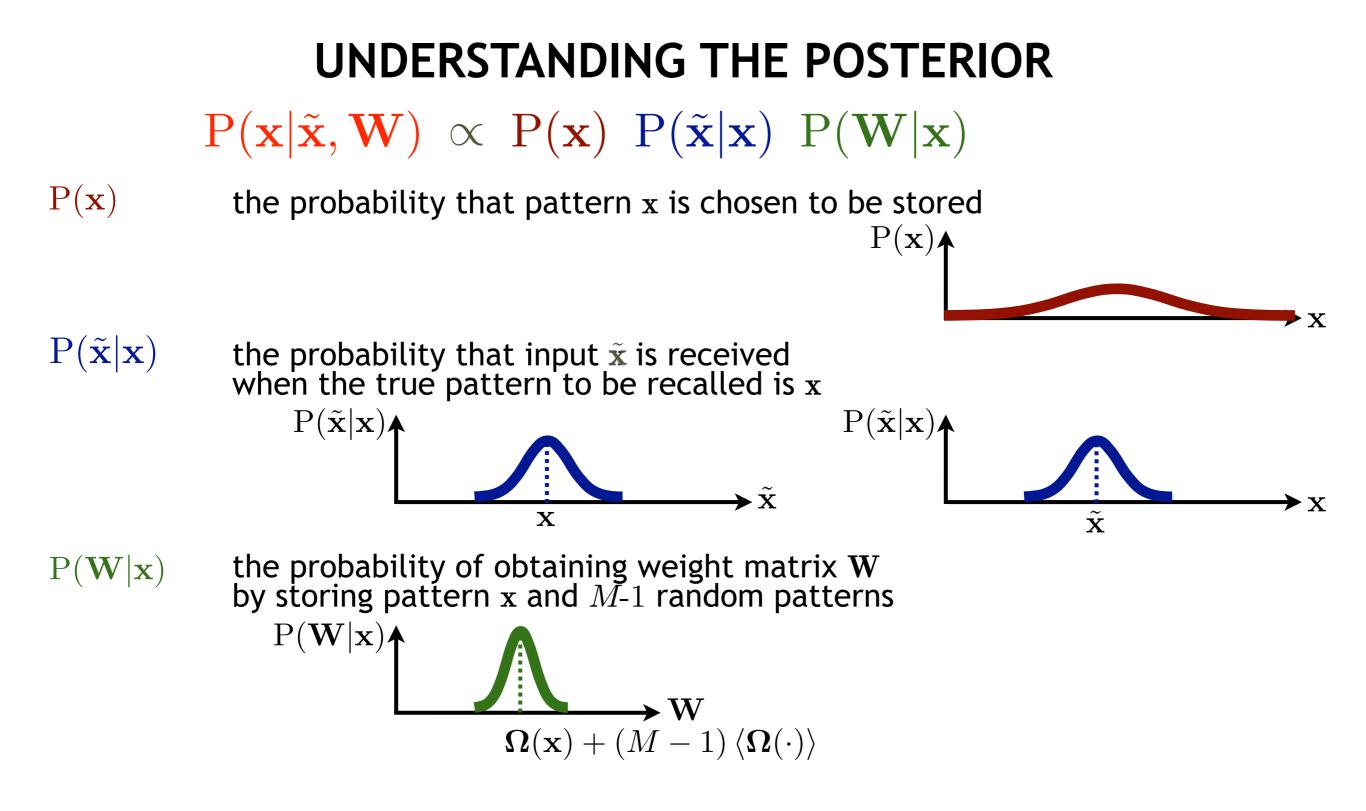
Х

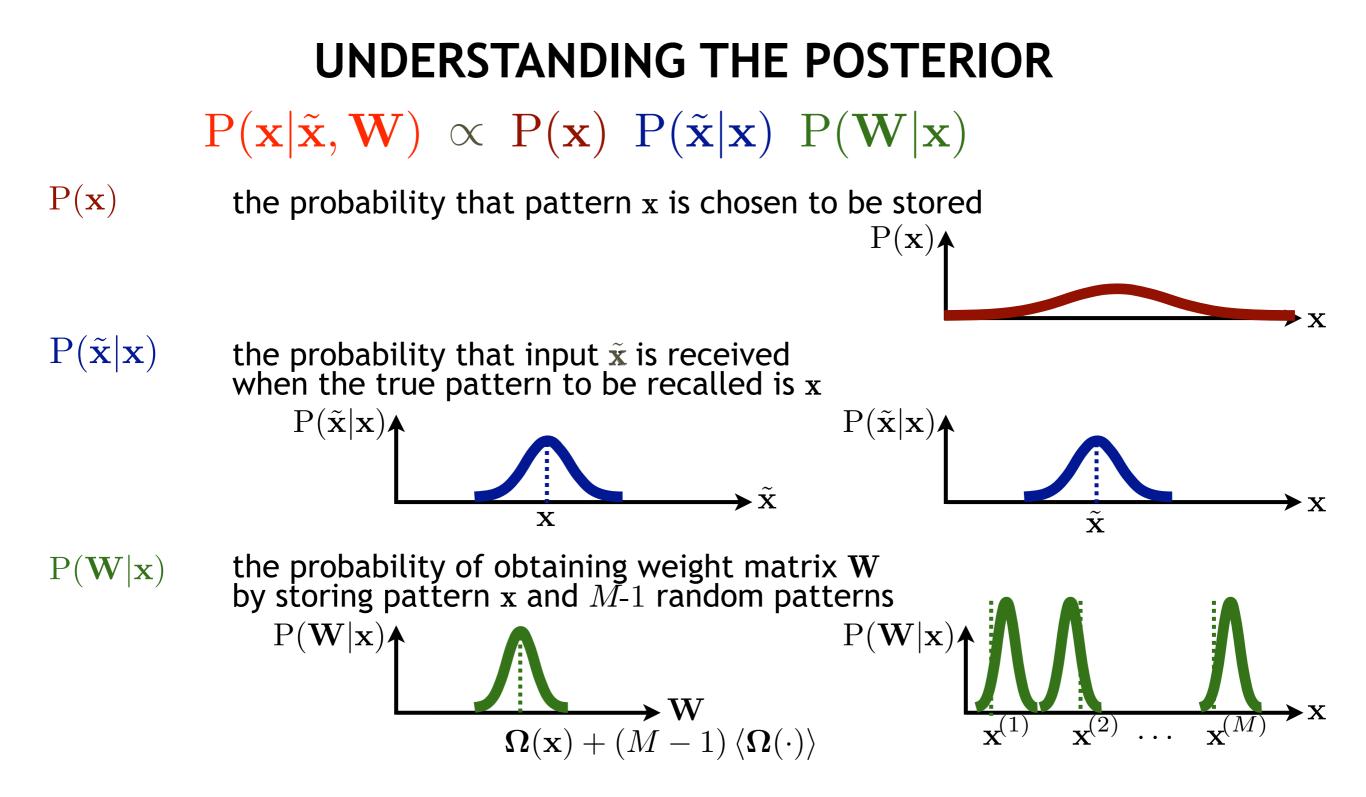
 $\tilde{\mathbf{x}}$

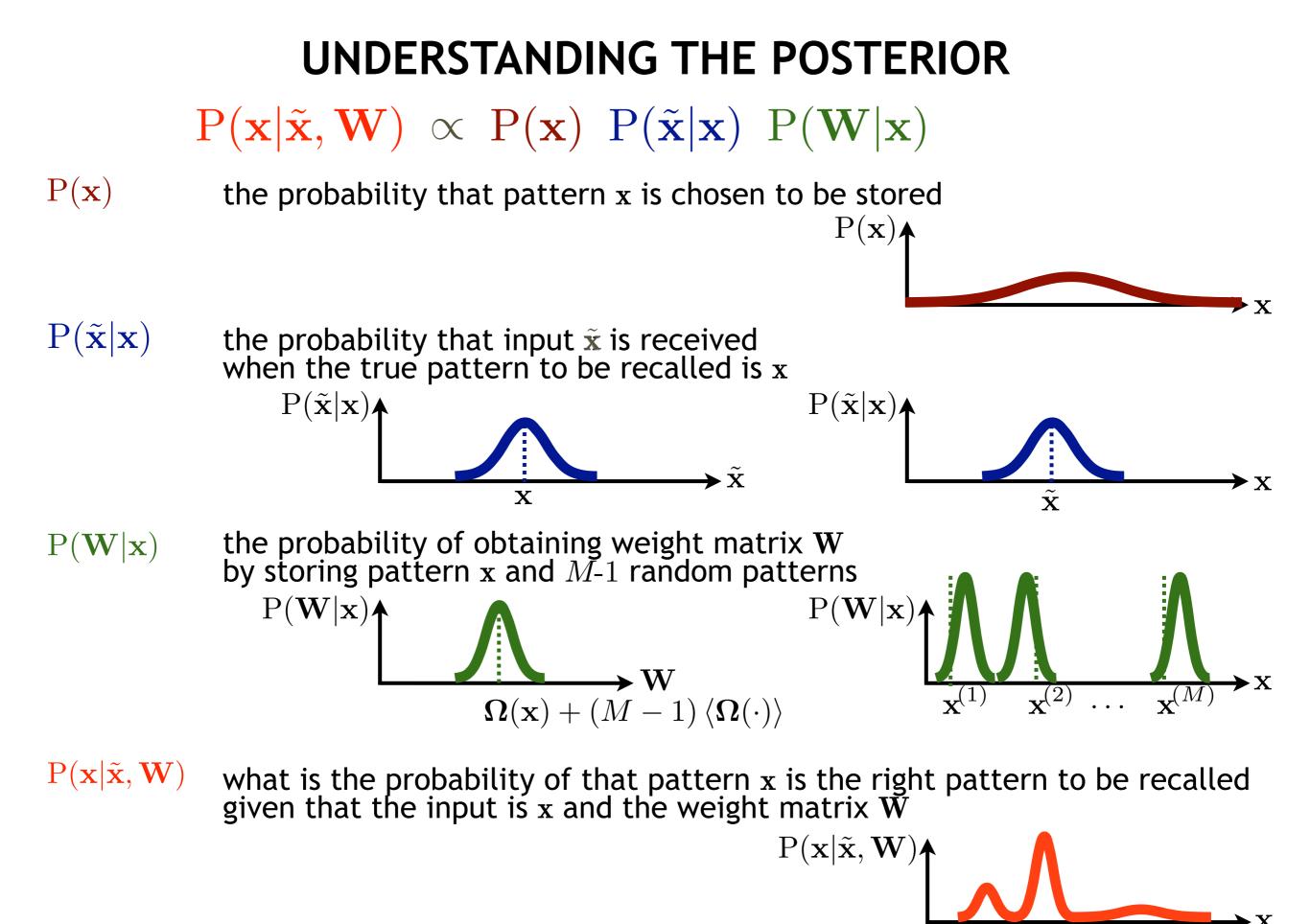
 $P(\tilde{\mathbf{x}}|\mathbf{x})$

14







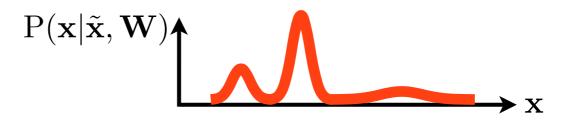


MAXIMUM A POSTERIORI INFERENCE

- memories are represented as distributed patterns of activity
- assume particular learning rule
- **assume** particular network dynamics
- → **find** energy function

MAXIMUM A POSTERIORI INFERENCE

- memories are represented as distributed patterns of activity
- **assume** particular learning rule
- **define** energy function
- → derive network dynamics

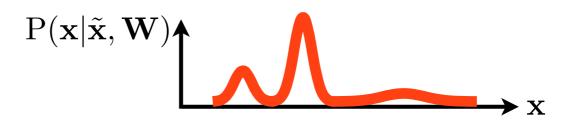


- memories are represented as distributed patterns of activity
- **assume** particular learning rule
- **define** energy function
- → derive network dynamics



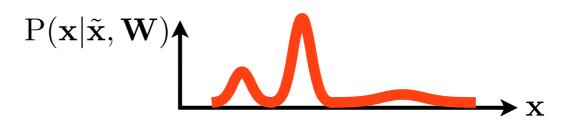
$$\frac{d}{dt}x_i \propto \frac{\partial}{\partial x_i} \log P(\mathbf{x}|\tilde{\mathbf{x}}, \mathbf{W})$$

- memories are represented as distributed patterns of activity
- **assume** particular learning rule
- **define** energy function
- → derive network dynamics



$$\frac{d}{dt}x_i \propto \frac{\partial}{\partial x_i} \log P(\mathbf{x}) + \frac{\partial}{\partial x_i} \log P(\tilde{\mathbf{x}}|\mathbf{x}) + \frac{\partial}{\partial x_i} \log P(\mathbf{W}|\mathbf{x})$$

- memories are represented as distributed patterns of activity
- **assume** particular learning rule
- **define** energy function
- → derive network dynamics



$$\frac{d}{dt}x_i \propto \frac{\partial}{\partial x_i} \log P(\mathbf{x}) + \frac{\partial}{\partial x_i} \log P(\tilde{\mathbf{x}}|\mathbf{x}) + \frac{\partial}{\partial x_i} \log P(\mathbf{W}|\mathbf{x})$$
$$\approx \frac{\partial}{\partial x_i} \log P(x_i) + \frac{\partial}{\partial x_i} \log P(\tilde{x}_i|x_i) + \frac{1}{2} \sum_j \frac{\partial}{\partial x_i} \log P(w_{ij}|x_i, x_j)$$

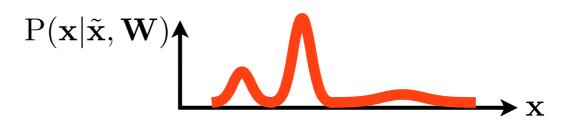
- memories are represented as distributed patterns of activity
- **assume** particular learning rule
- **define** energy function
- → derive network dynamics

$$P(\mathbf{x}|\tilde{\mathbf{x}}, \mathbf{W}) \longrightarrow \mathbf{x}$$

$$\frac{d}{dt}x_i \propto \frac{\partial}{\partial x_i} \log P(\mathbf{x}) + \frac{\partial}{\partial x_i} \log P(\tilde{\mathbf{x}}|\mathbf{x}) + \frac{\partial}{\partial x_i} \log P(\mathbf{W}|\mathbf{x})$$
$$\approx \frac{\partial}{\partial x_i} \log P(x_i) + \frac{\partial}{\partial x_i} \log P(\tilde{x}_i|x_i) + \frac{1}{2} \sum_j \frac{\partial}{\partial x_i} \log P(w_{ij}|x_i, x_j)$$

$$rac{d}{dt}x_i\propto\ldots+\sum_j w_{ij}~rac{\partial}{\partial x_i}\Omega(x_i,x_j)$$
Lengyel et al, Nat Neurosci 2005

- memories are represented as distributed patterns of activity
- **assume** particular learning rule
- **define** energy function
- → derive network dynamics

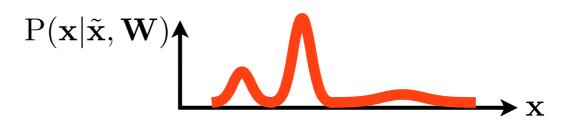


network dynamics implements gradient ascent on the (log) posterior

$$\frac{d}{dt}x_i \propto \frac{\partial}{\partial x_i} \log P(\mathbf{x}) + \frac{\partial}{\partial x_i} \log P(\tilde{\mathbf{x}}|\mathbf{x}) + \frac{\partial}{\partial x_i} \log P(\mathbf{W}|\mathbf{x})$$
$$\approx \frac{\partial}{\partial x_i} \log P(x_i) + \frac{\partial}{\partial x_i} \log P(\tilde{x}_i|x_i) + \frac{1}{2} \sum_j \frac{\partial}{\partial x_i} \log P(w_{ij}|x_i, x_j)$$

 $\frac{d}{dt}x_i \propto \ldots + \sum_j w_{ij} \frac{\partial}{\partial x_i} \Omega(x_i, x_j)$ interactions should be scaled by synaptic weights

- memories are represented as distributed patterns of activity
- **assume** particular learning rule
- **define** energy function
- → derive network dynamics



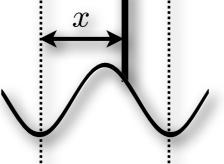
network dynamics implements gradient ascent on the (log) posterior

$$\frac{\partial}{\partial x_i} \cos P(\mathbf{x}) + \frac{\partial}{\partial x_i} \log P(\mathbf{x}) + \frac{\partial}{\partial x_i} \log P(\tilde{\mathbf{x}}|\mathbf{x}) + \frac{\partial}{\partial x_i} \log P(\mathbf{W}|\mathbf{x})$$
$$\approx \frac{\partial}{\partial x_i} \log P(x_i) + \frac{\partial}{\partial x_i} \log P(\tilde{x}_i|x_i) + \frac{1}{2} \sum_j \frac{\partial}{\partial x_i} \log P(w_{ij}|x_i, x_j)$$

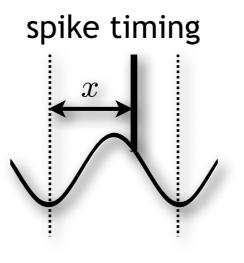
 $\frac{d}{dt}x_i \propto \ldots + \sum_j w_{ij} \frac{\partial}{\partial x_i} \Omega(x_i, x_j)$ interactions should be scaled by synaptic weights matching between storage and recall Lengyel et al, Nat Neurosci 2005

representation

spike timing

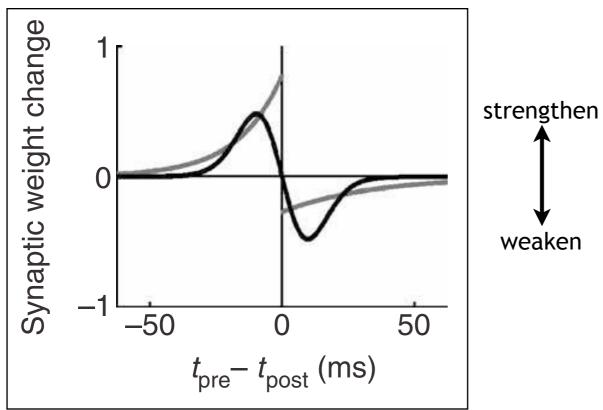


representation



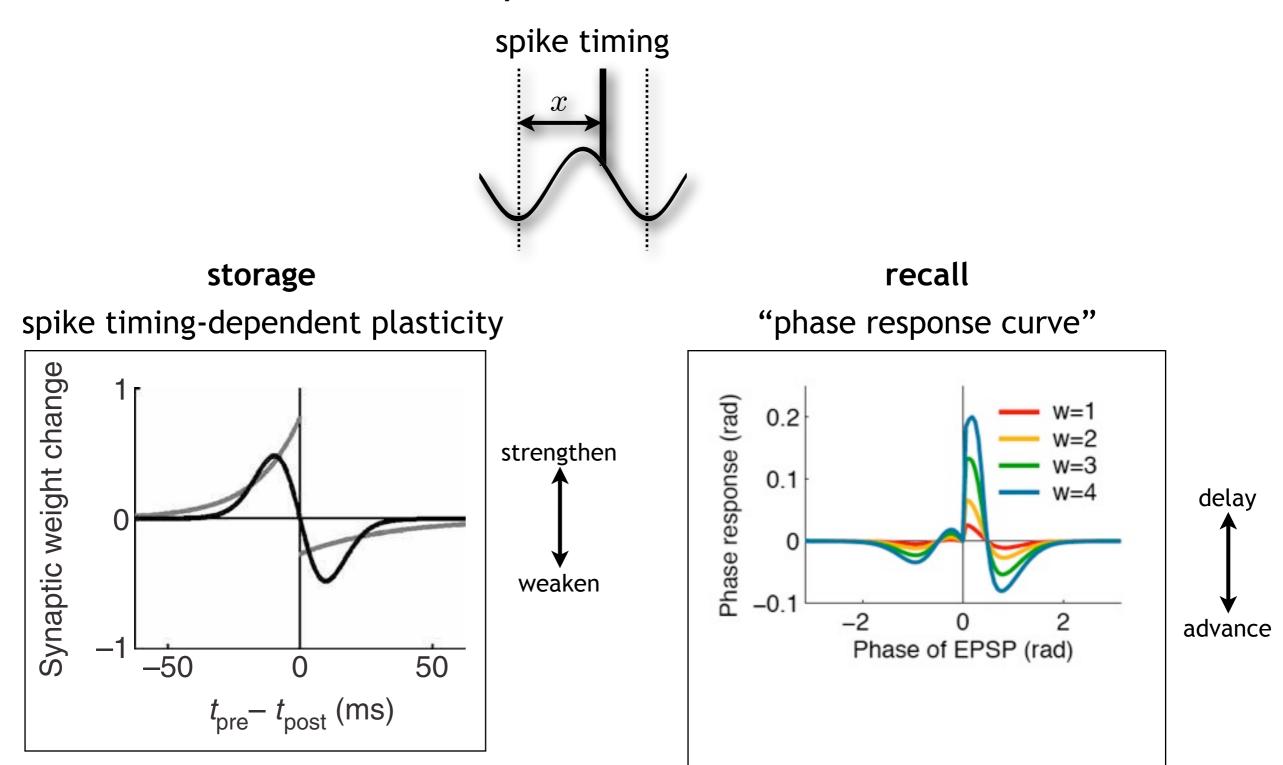
storage

spike timing-dependent plasticity



16

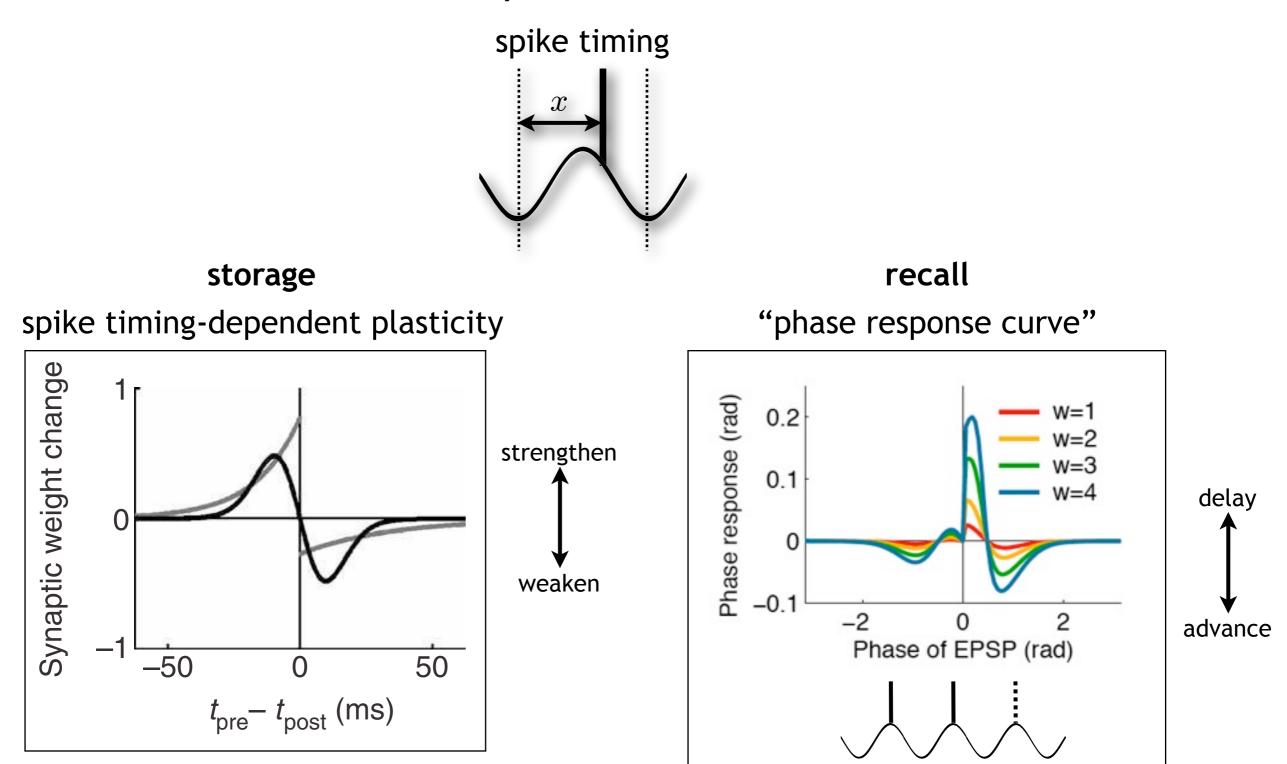
representation



Lengyel et al, Nat Neurosci 2005

Máté Lengyel | Computational modelling of synaptic function

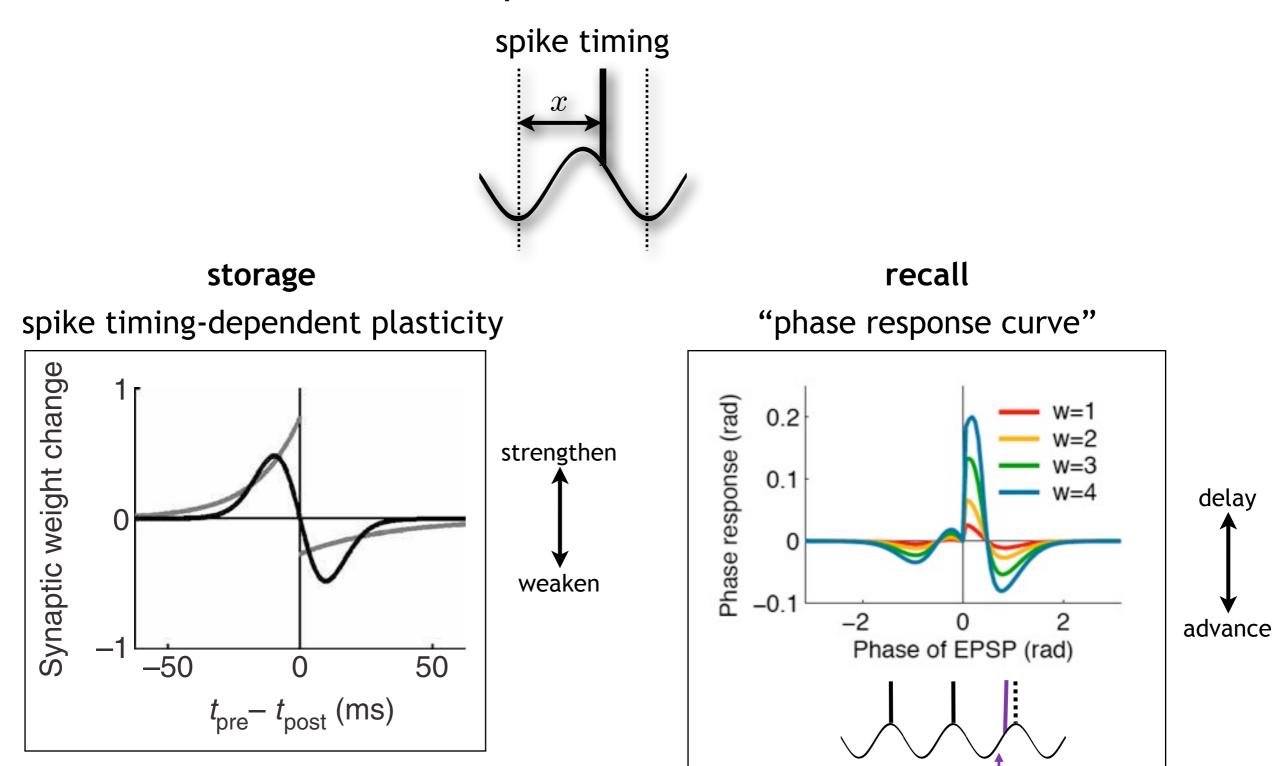
representation



Lengyel et al, Nat Neurosci 2005

Máté Lengyel | Computational modelling of synaptic function

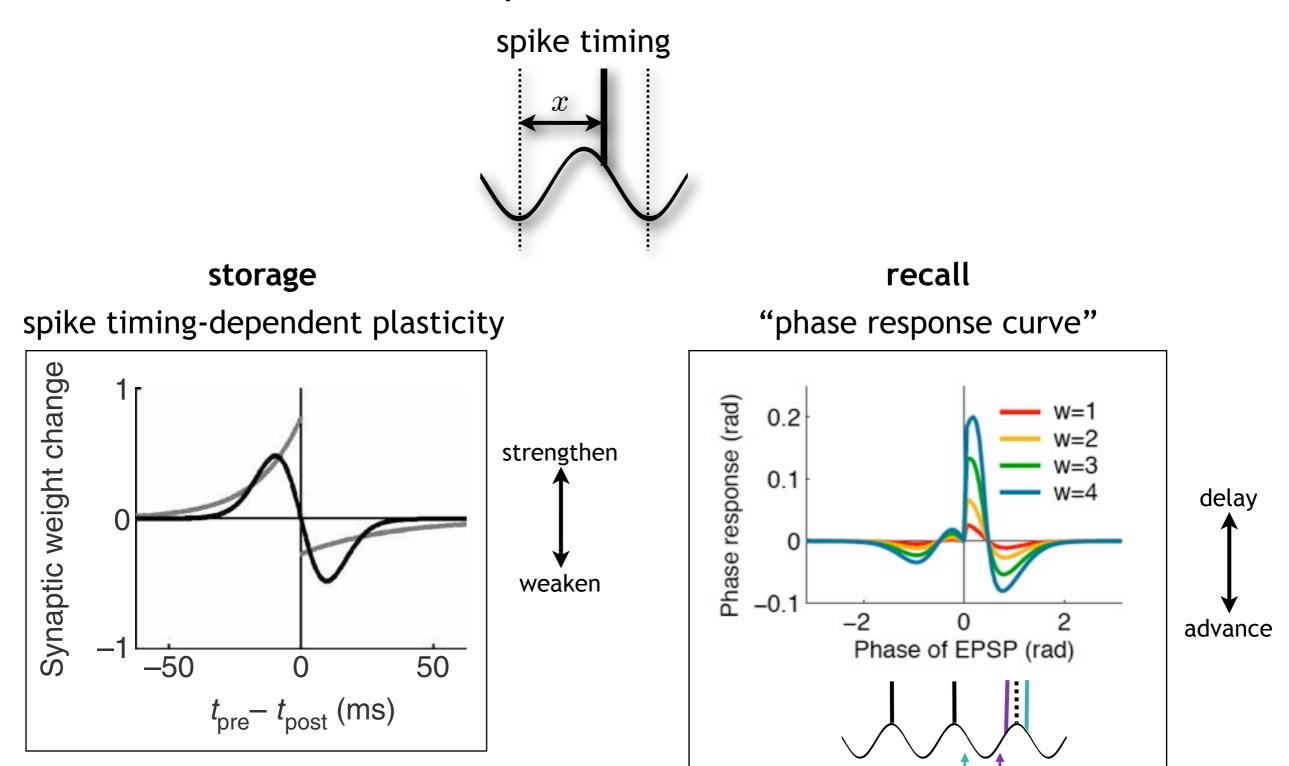
representation



Lengyel et al, Nat Neurosci 2005

Máté Lengyel | Computational modelling of synaptic function

representation

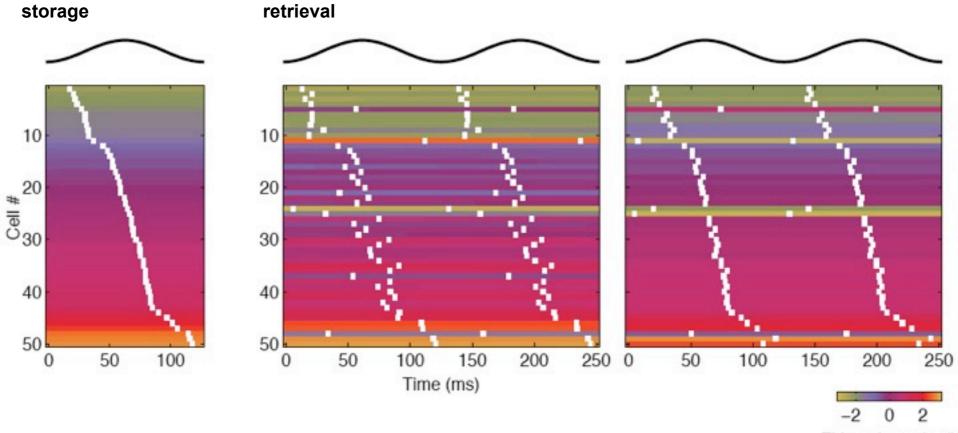


Máté Lengyel | Computational modelling of synaptic function

MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

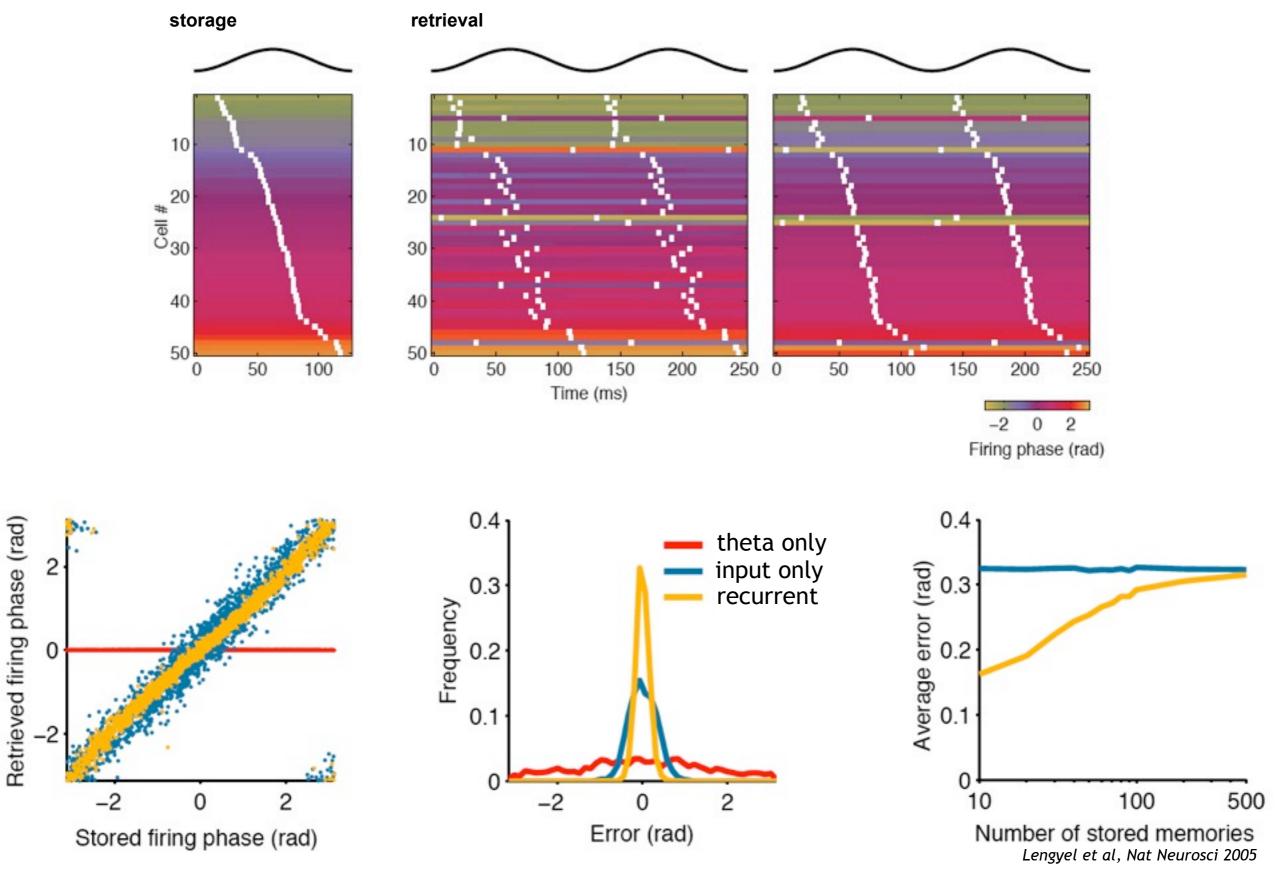
Lengyel et al, Nat Neurosci 2005

PERFORMANCE OF NETWORK



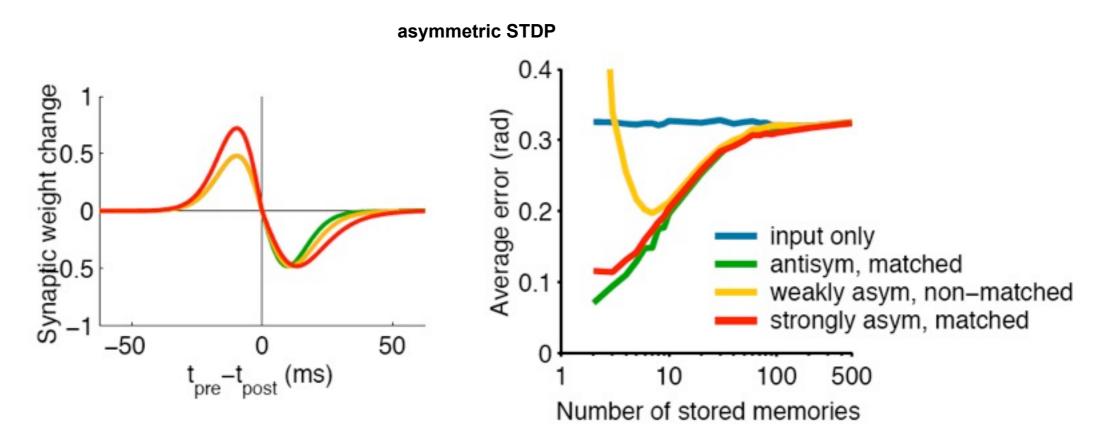
Firing phase (rad)

PERFORMANCE OF NETWORK

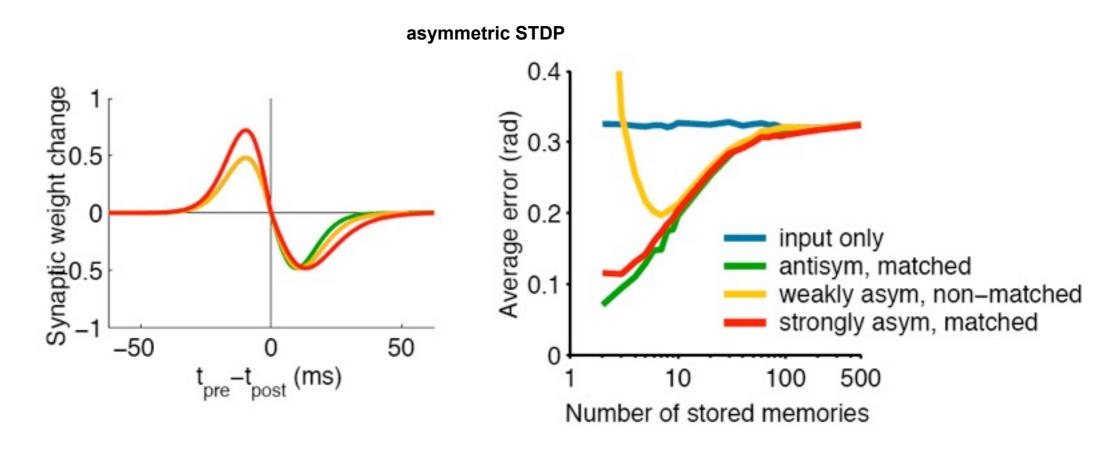


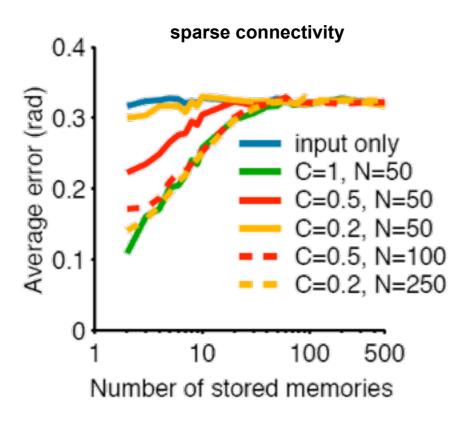
Máté Lengyel | Computational modelling of synaptic function

ROBUSTNESS OF RECALL PERFORMANCE

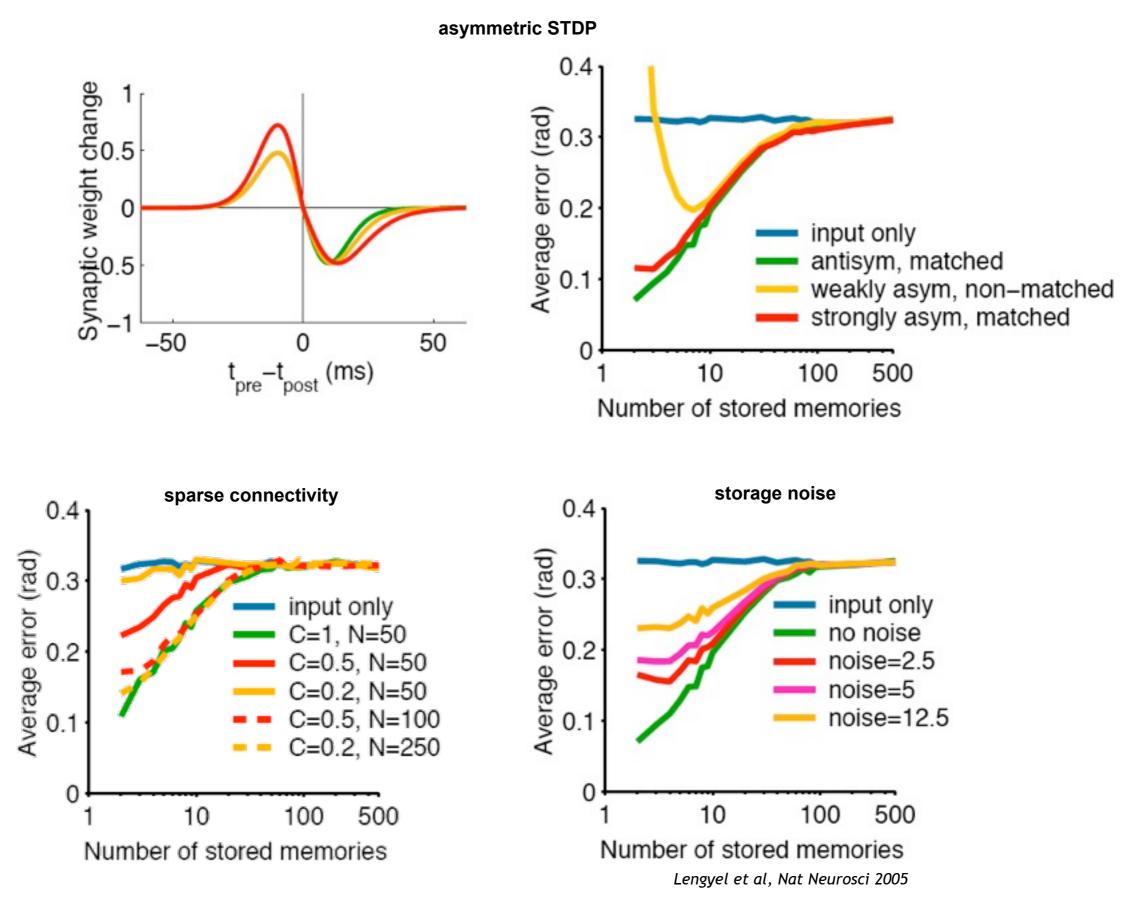


ROBUSTNESS OF RECALL PERFORMANCE



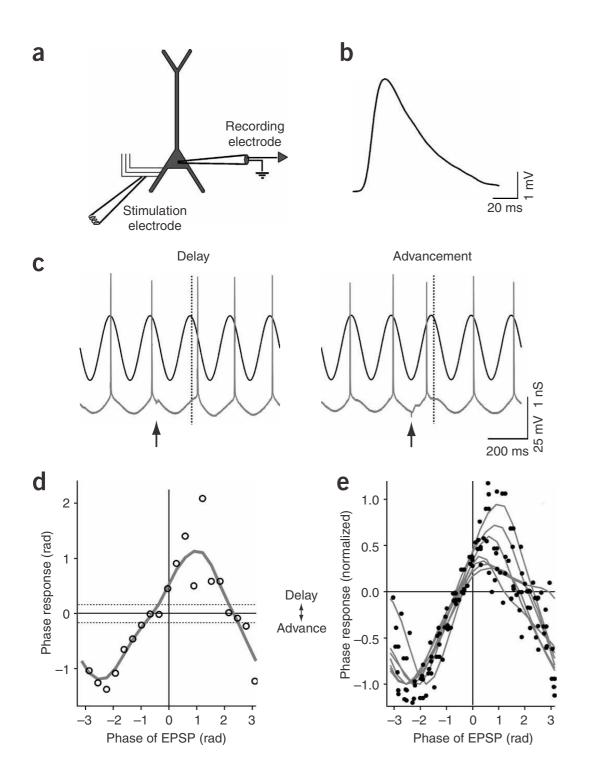


ROBUSTNESS OF RECALL PERFORMANCE

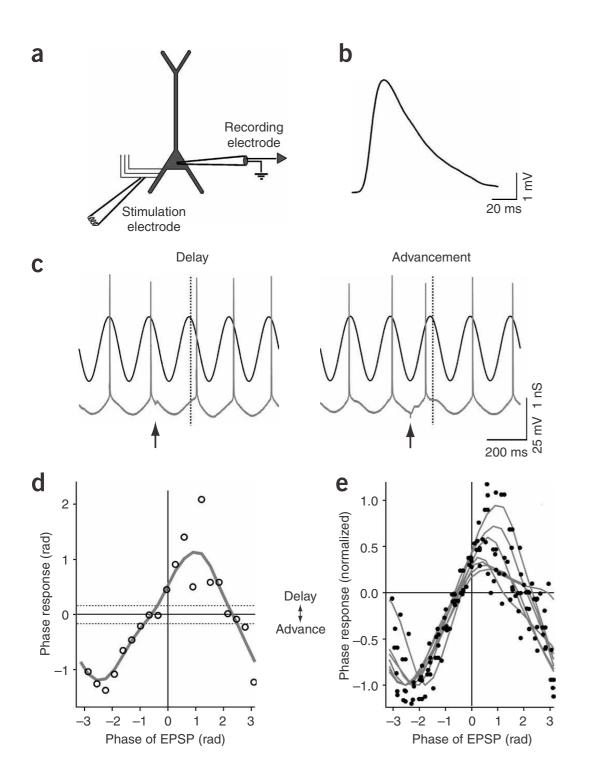


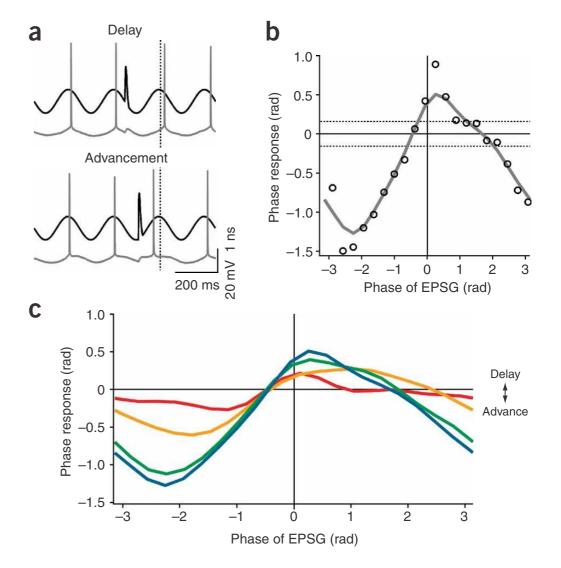
Máté Lengyel | Computational modelling of synaptic function MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012 http://www.eng.cam.ac.uk/~m.lengyel

TESTING THE PREDICTION IN VITRO



TESTING THE PREDICTION IN VITRO

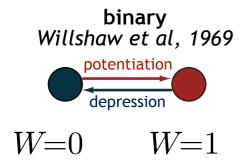


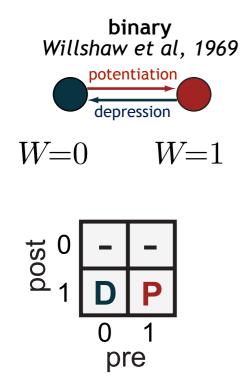


Lengyel et al, Nat Neurosci 2005

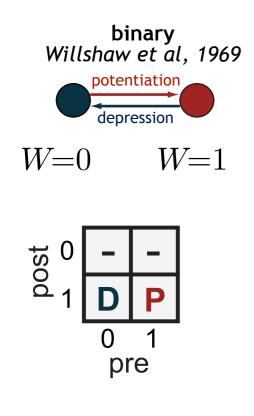
$$W_{ij} = \sum_{m=1}^{M} \Omega\left(x_i^{(m)}, x_j^{(m)}\right)$$

$$W_{ij} = \sum_{m=1}^{M} \Omega\left(x_i^{(m)}, x_j^{(m)}\right) \rightarrow \text{unlimited dynamic range ...}$$

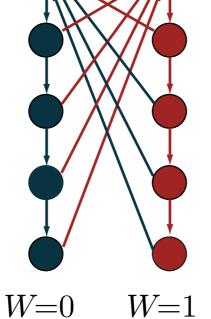


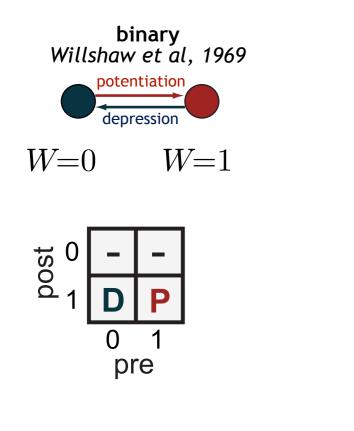


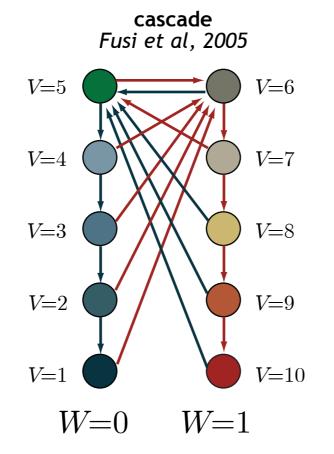
synapses with limited dynamic range



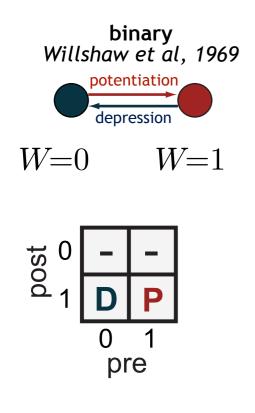
cascade Fusi et al, 2005

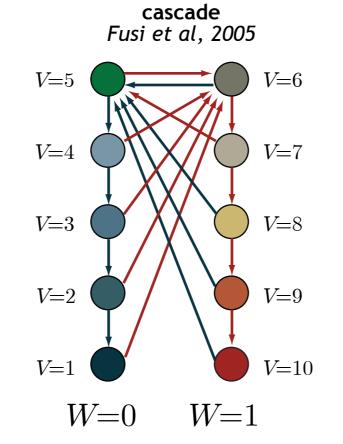




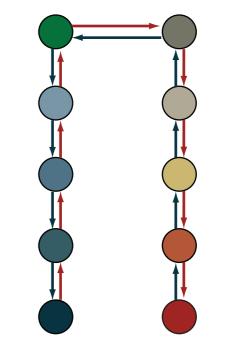


synapses with limited dynamic range

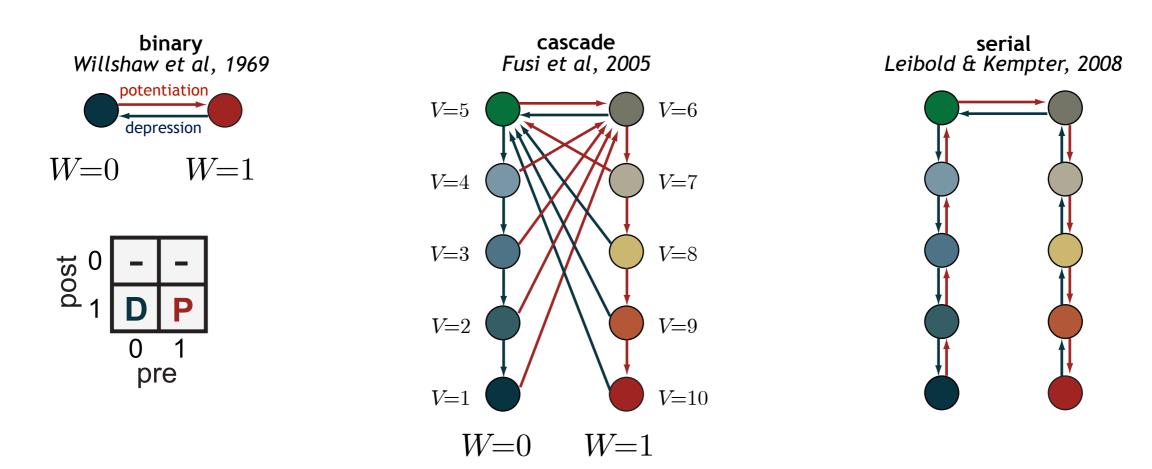




serial Leibold & Kempter, 2008



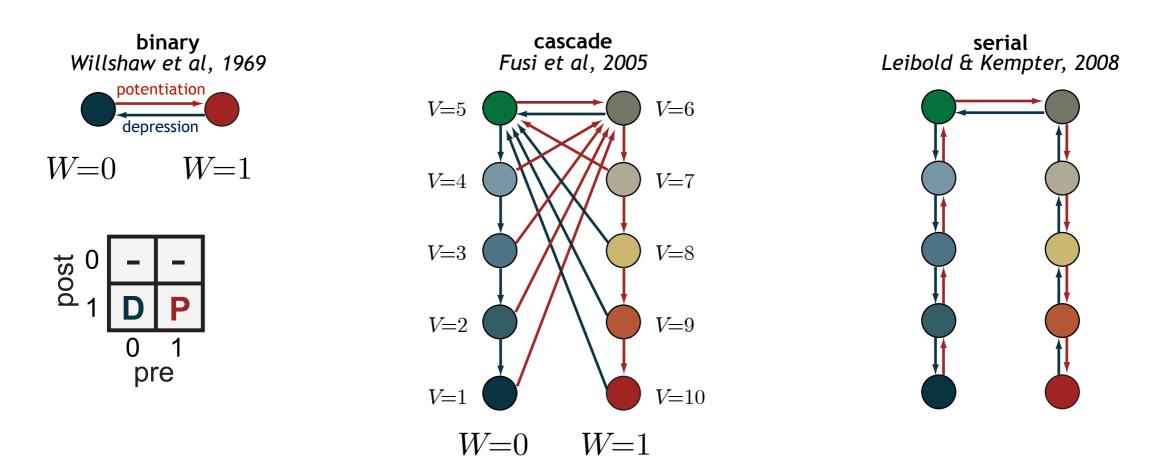
synapses with limited dynamic range



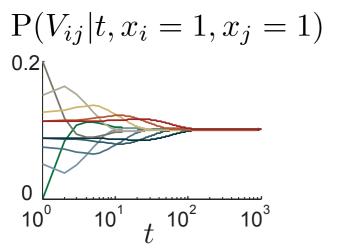
... lead to palimpsest memories

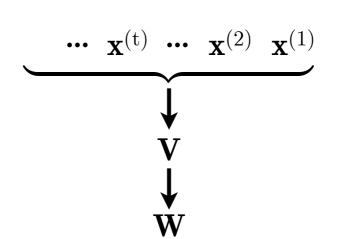
$$P(V_{ij}|t, x_i = 1, x_j = 1)$$

synapses with limited dynamic range



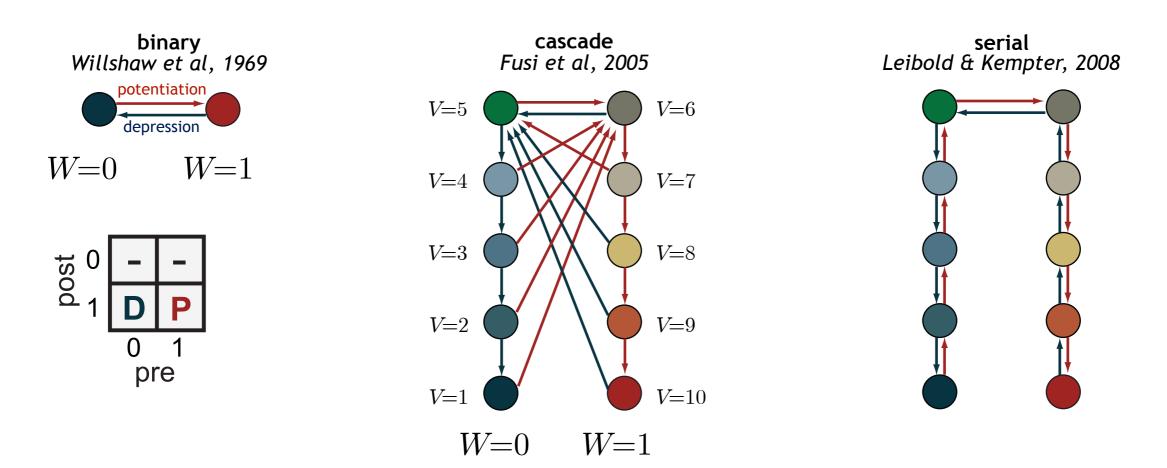
... lead to palimpsest memories



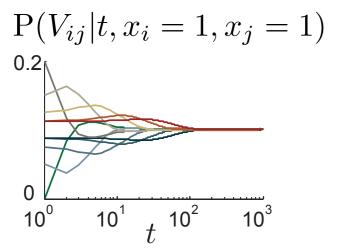


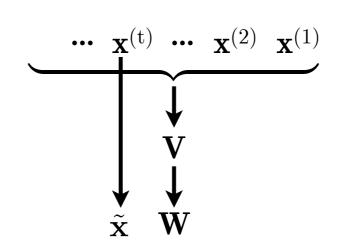
Máté Lengyel | Computational modelling of synaptic function MPS-UCL Symposium o

synapses with limited dynamic range



... lead to palimpsest memories

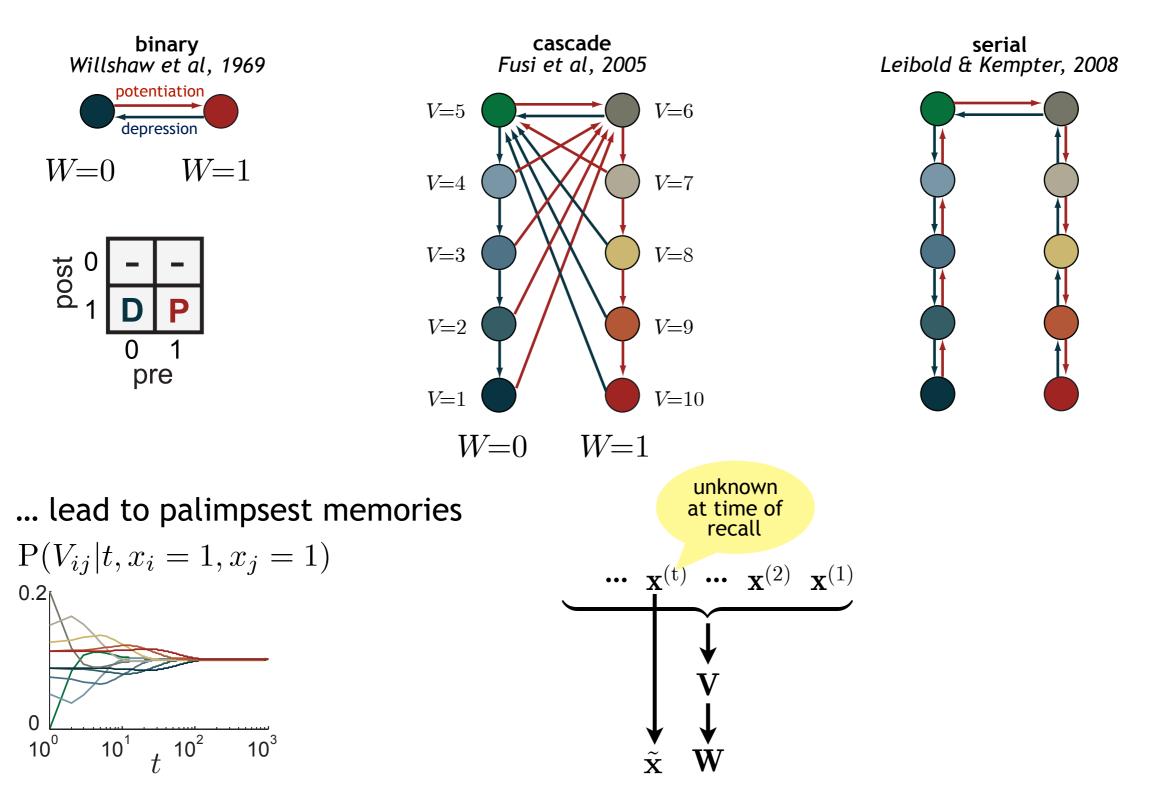




Máté Lengyel | Computational modelling of synaptic function MPS-UCL Symposium on Com

MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012 http://w

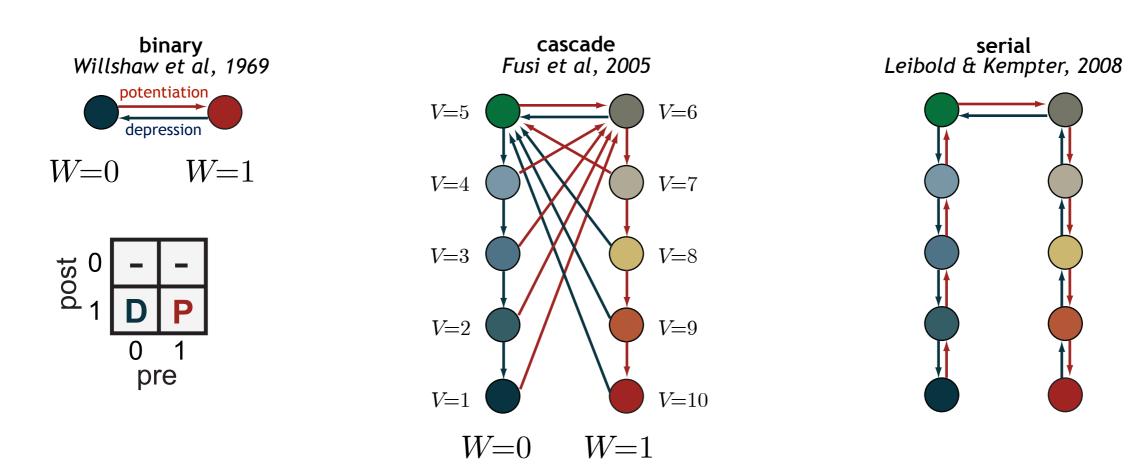
synapses with limited dynamic range



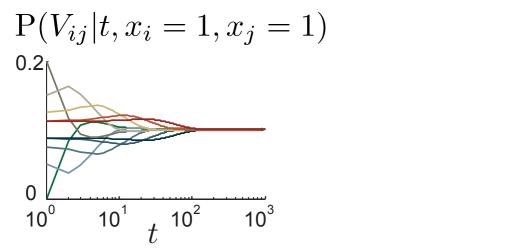
Máté Lengyel | Computational modelling of synaptic function

MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012 http://w

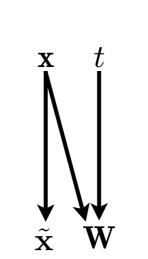
synapses with limited dynamic range



... lead to palimpsest memories

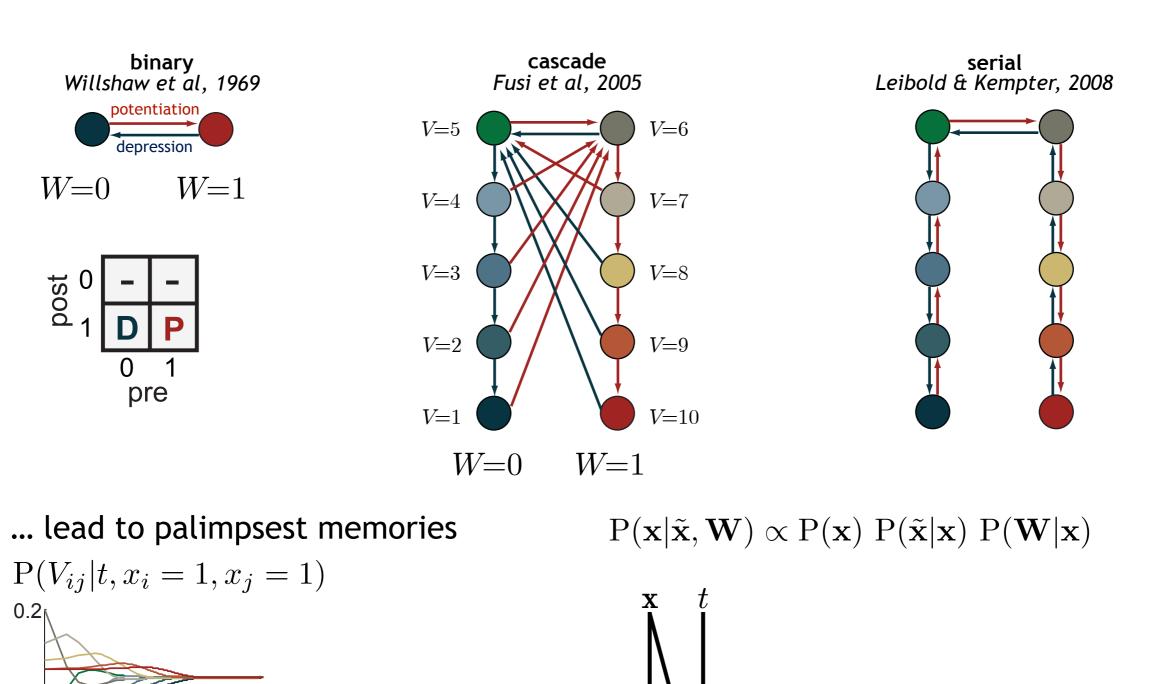


Máté Lengyel | Computational modelling of synaptic function



MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012 http://www.eng.cam.ac.uk/~m.lengyel 20

synapses with limited dynamic range



Máté Lengyel | Computational modelling of synaptic function

10¹

 t^{10^2}

10³

0

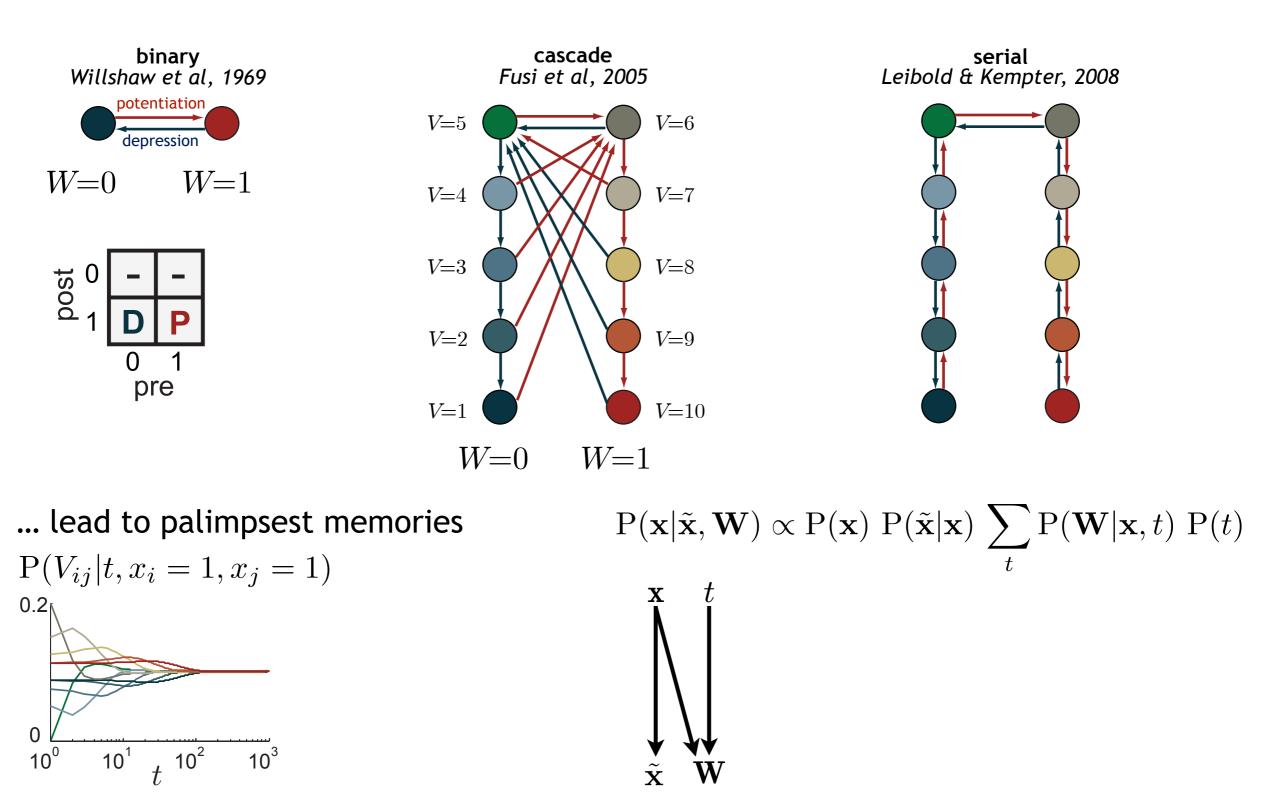
10⁰

MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

X

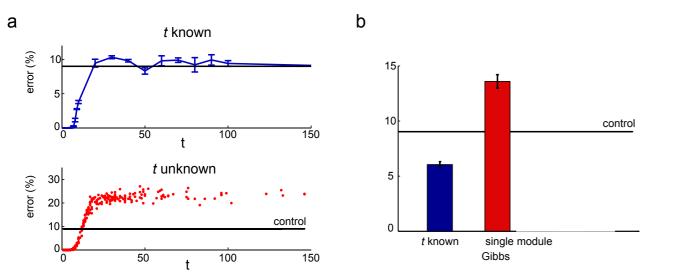
W

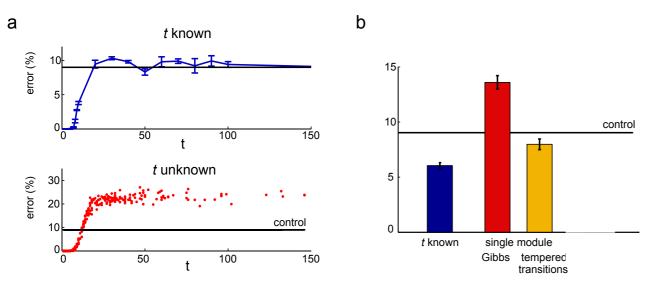
synapses with limited dynamic range

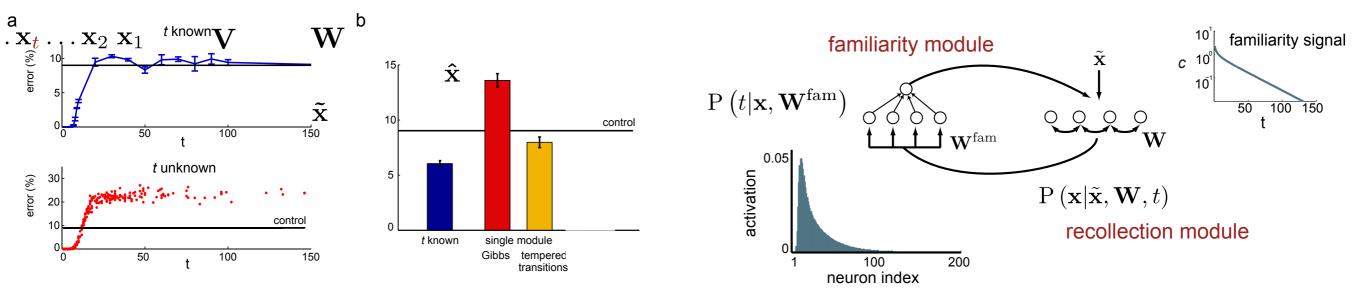


Máté Lengyel | Computational modelling of synaptic function

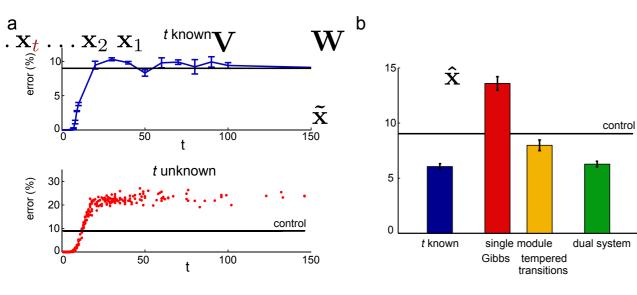
MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

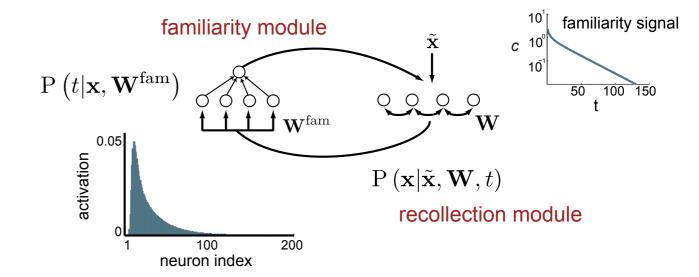






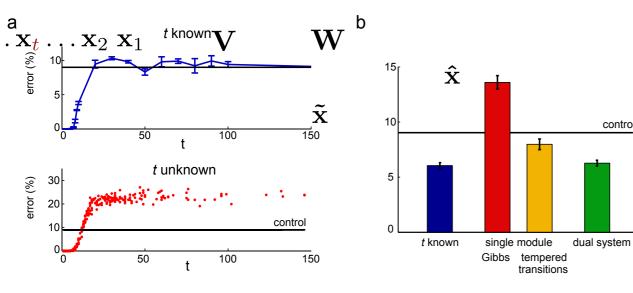
 $P(\mathbf{x}|\mathbf{W}, \mathbf{\tilde{x}}) \propto P(\mathbf{W}|\mathbf{x}) \cdot P(\mathbf{\tilde{x}}|\mathbf{x}) \cdot P(\mathbf{x})$

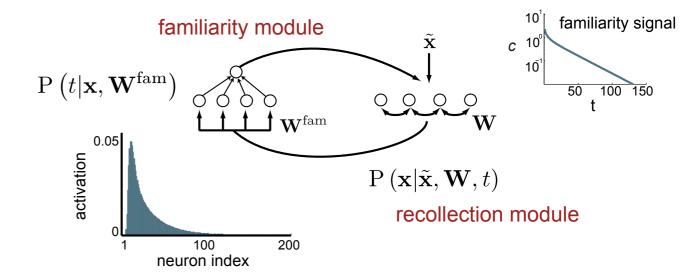




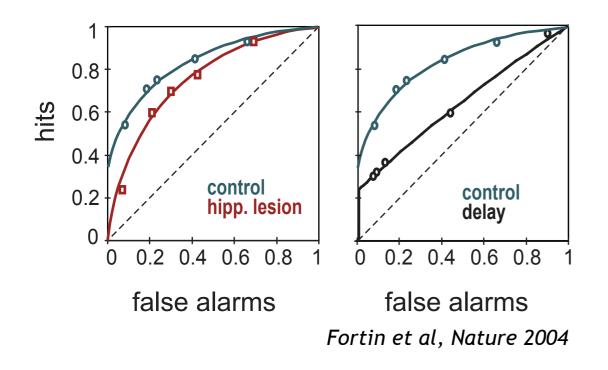
 $P(\mathbf{x}|\mathbf{W}, \mathbf{\tilde{x}}) \propto P(\mathbf{W}|\mathbf{x}) \cdot P(\mathbf{\tilde{x}}|\mathbf{x}) \cdot P(\mathbf{x})$

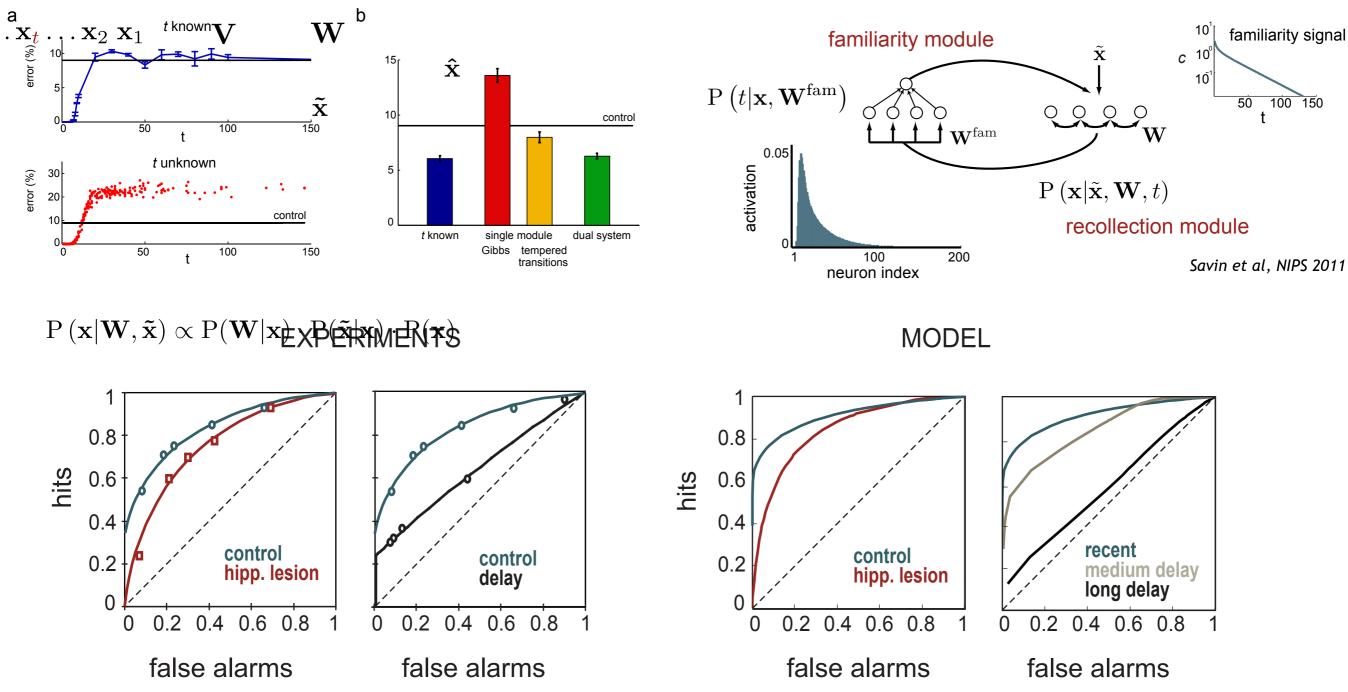
control





$P(\mathbf{x}|\mathbf{W}, \mathbf{\tilde{x}}) \propto P(\mathbf{W}|\mathbf{x}, \mathbf{\tilde{x}}) \in \mathbb{R}$



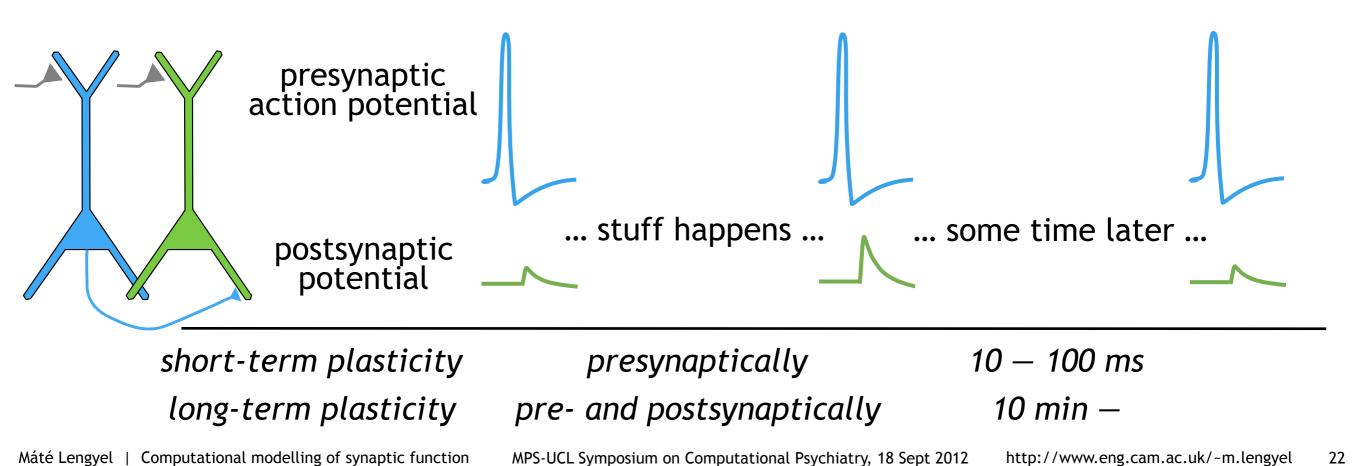


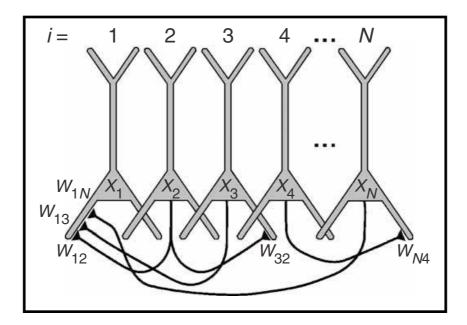
Fortin et al, Nature 2004

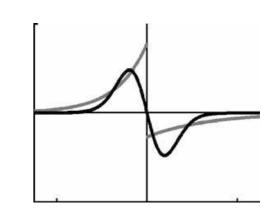
SYNAPTIC PLASTICITY

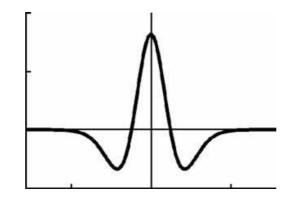
Synapses are computational devices that not only transmit action potential-encoded information, but also transform it. Neuronal information is often encoded by bursts or trains of action potentials. Synapses process such action potential bursts or trains in a synapsespecific manner that involves use-dependent changes in neurotransmitter release during the burst or train (referred to as short-term plasticity). In addition, synapses experience usedependent long-term changes in synaptic transmission that adjust the "gain" of a synapse, and operate either pre- and/or postsynaptically (referred to as long-term plasticity)

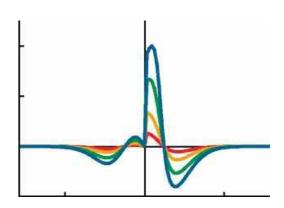
Südhof, 2012

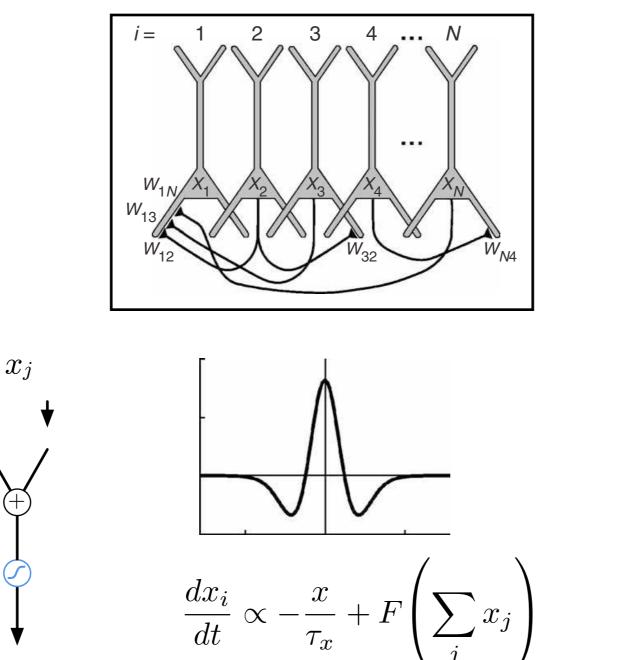


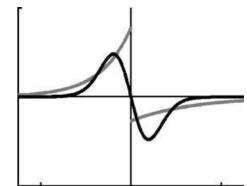


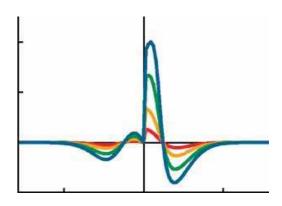




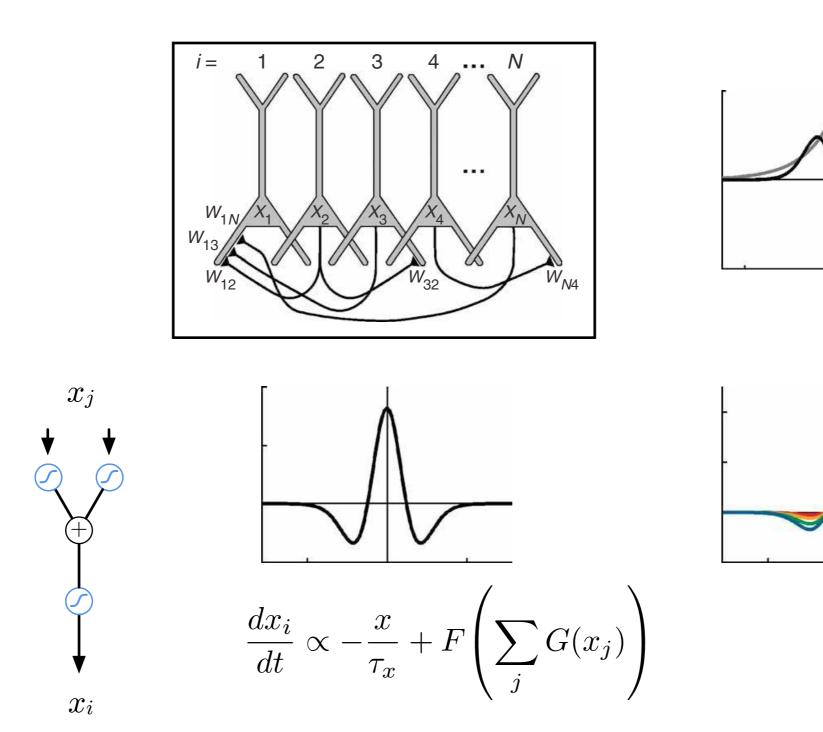


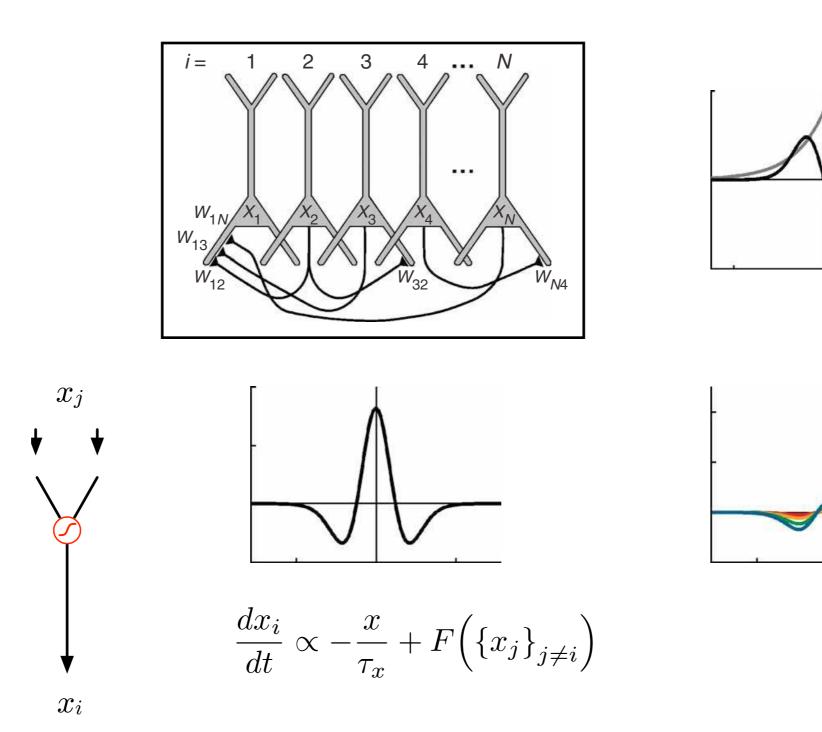


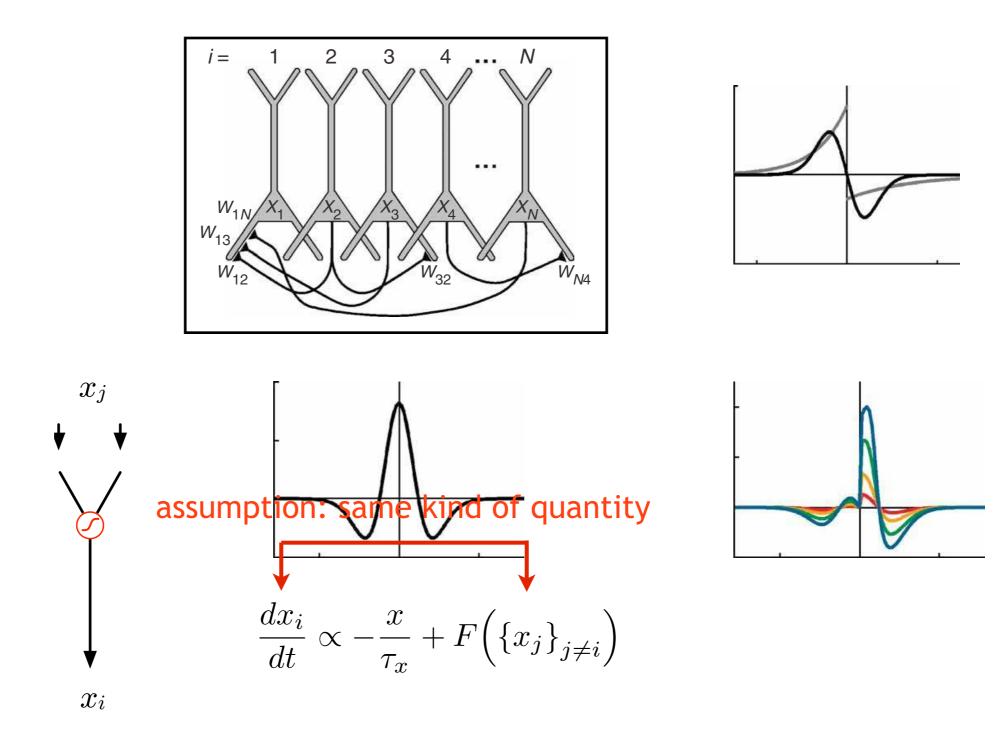




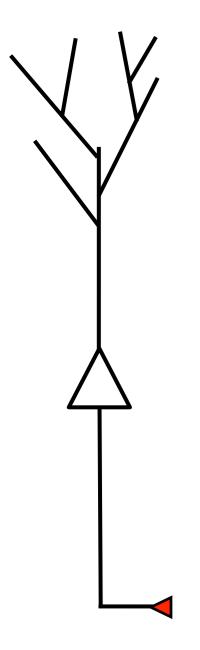
 x_i





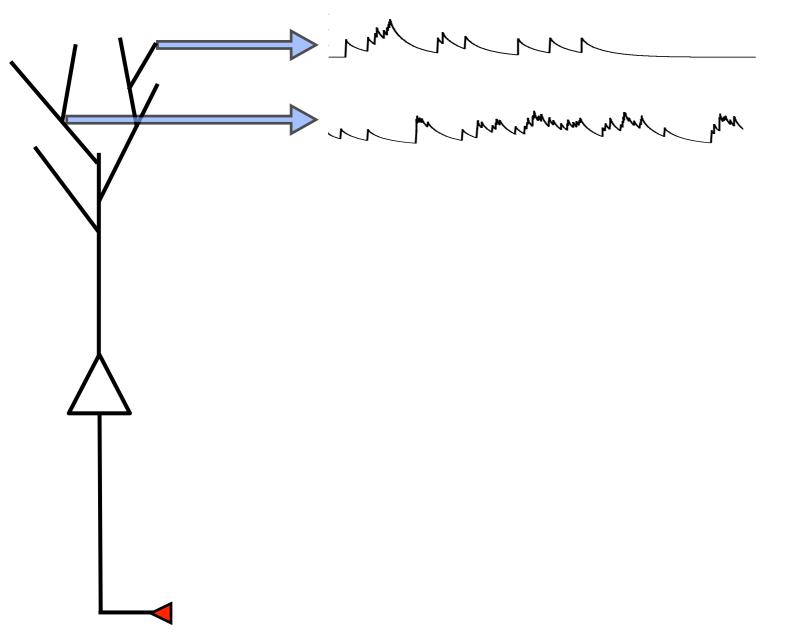


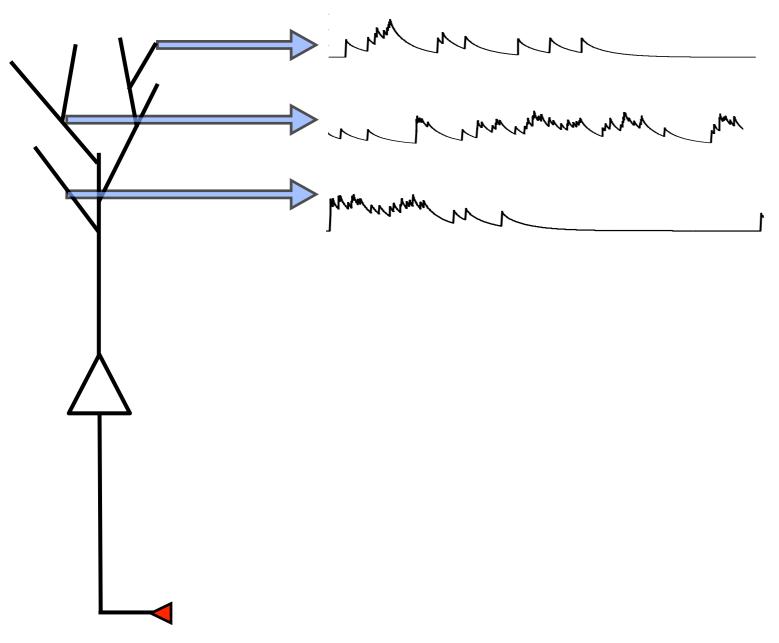
Máté Lengyel | Computational modelling of synaptic function MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012 http://www.eng.cam.ac.uk/~m.lengyel 23

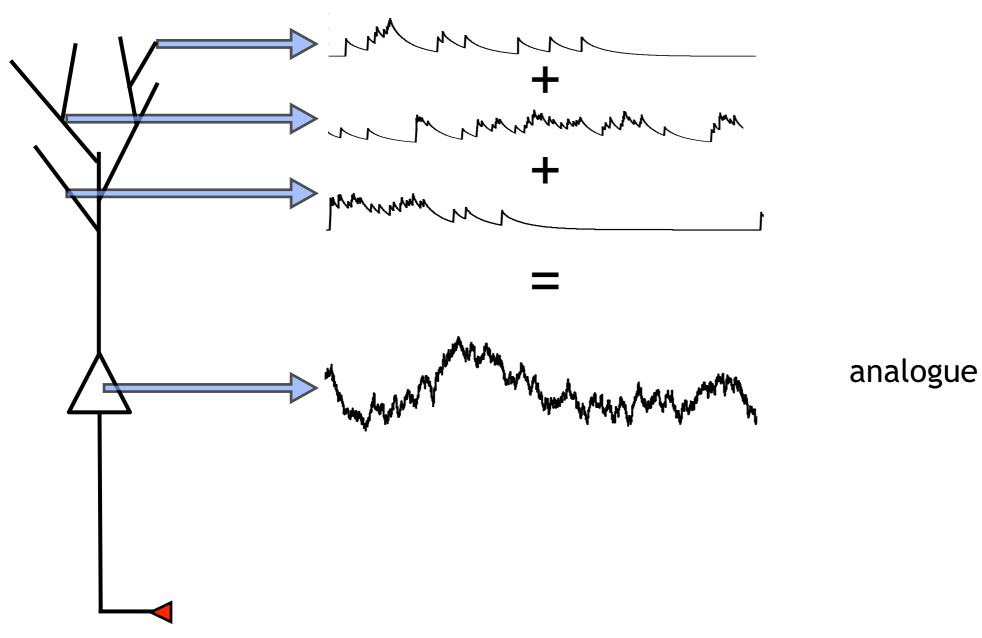


NW

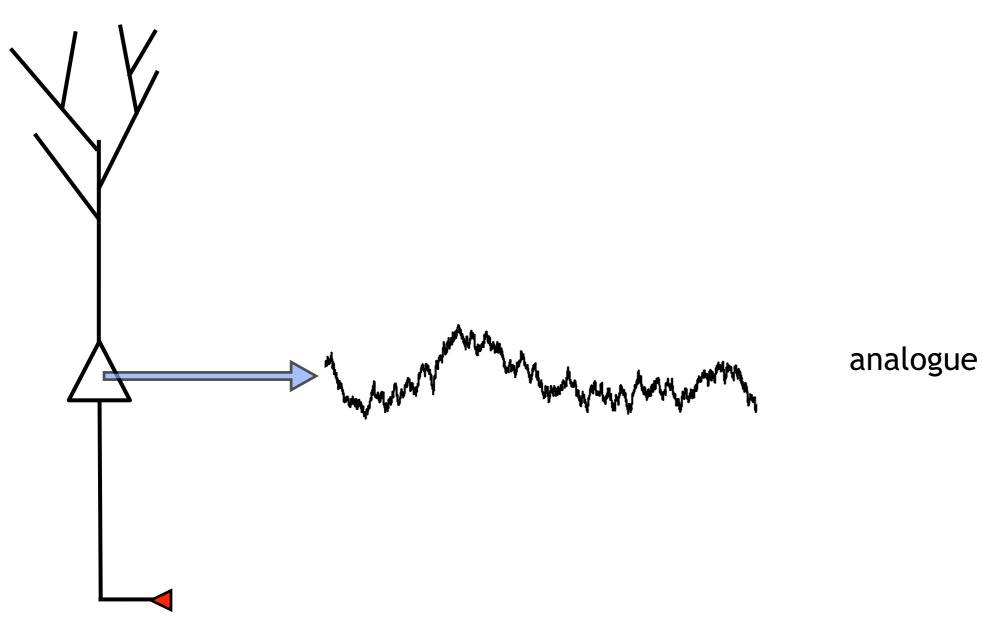
Máté Lengyel | Computational modelling of synaptic function MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012 http://www.eng.cam.ac.uk/~m.lengyel 24



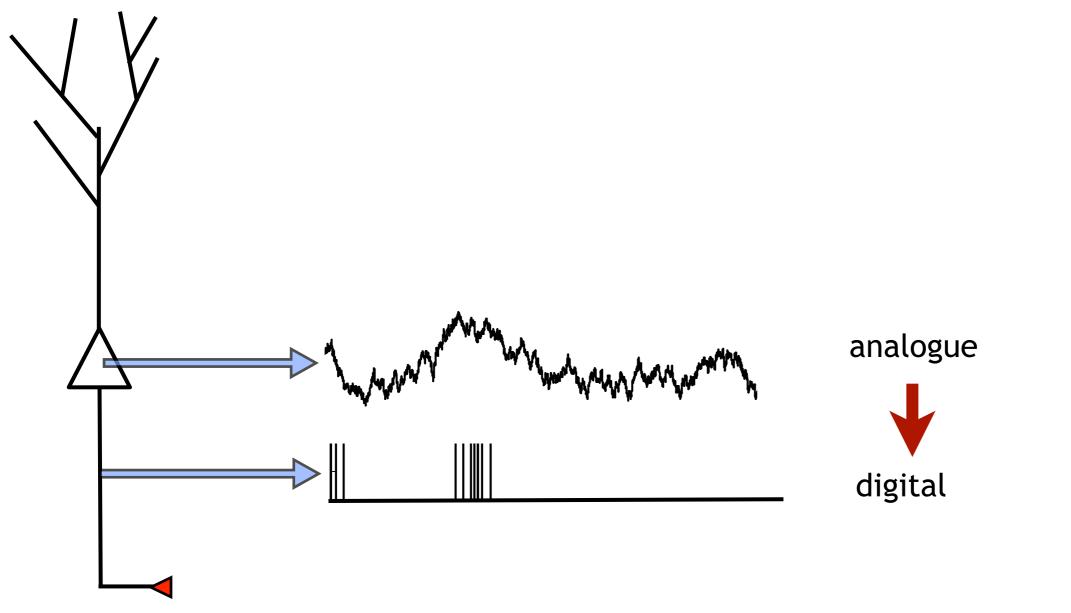


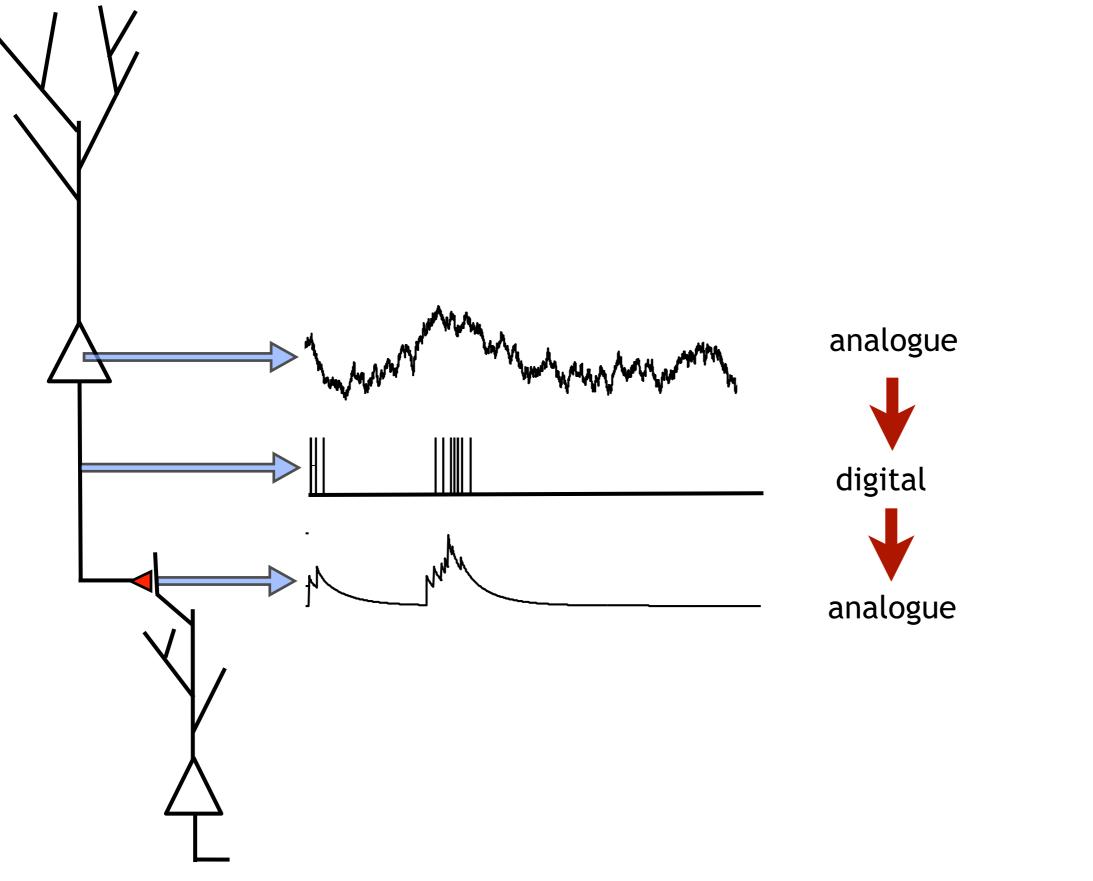


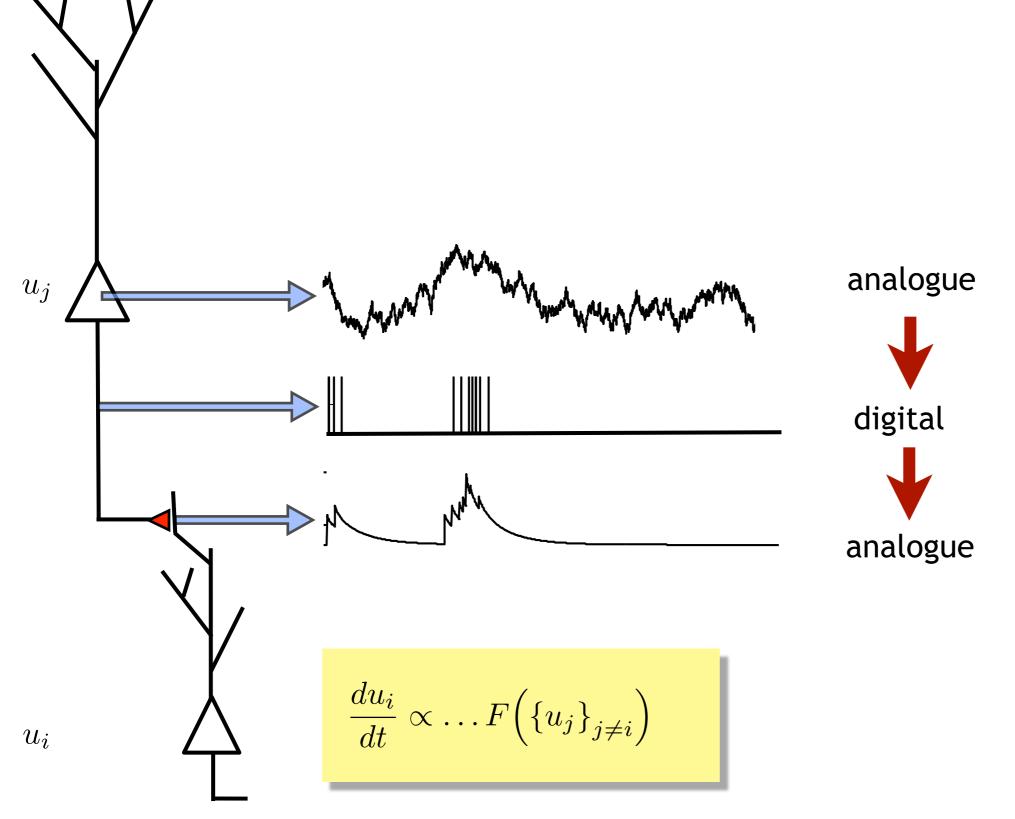
24



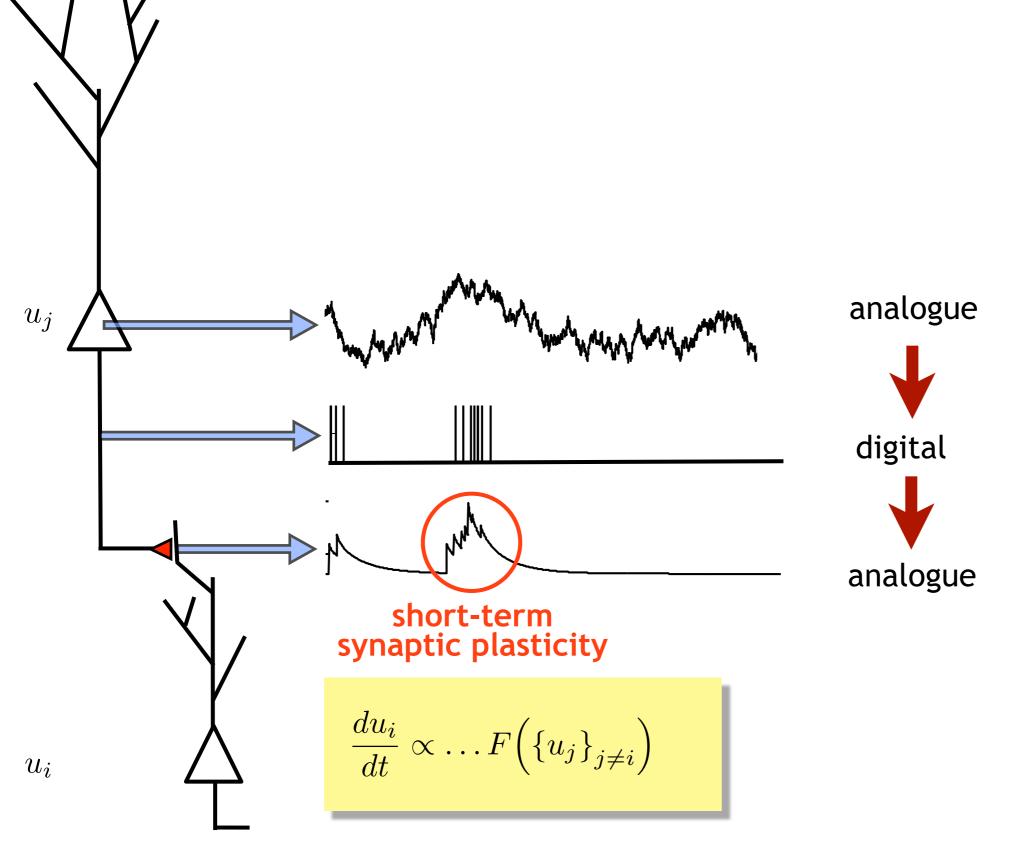
24

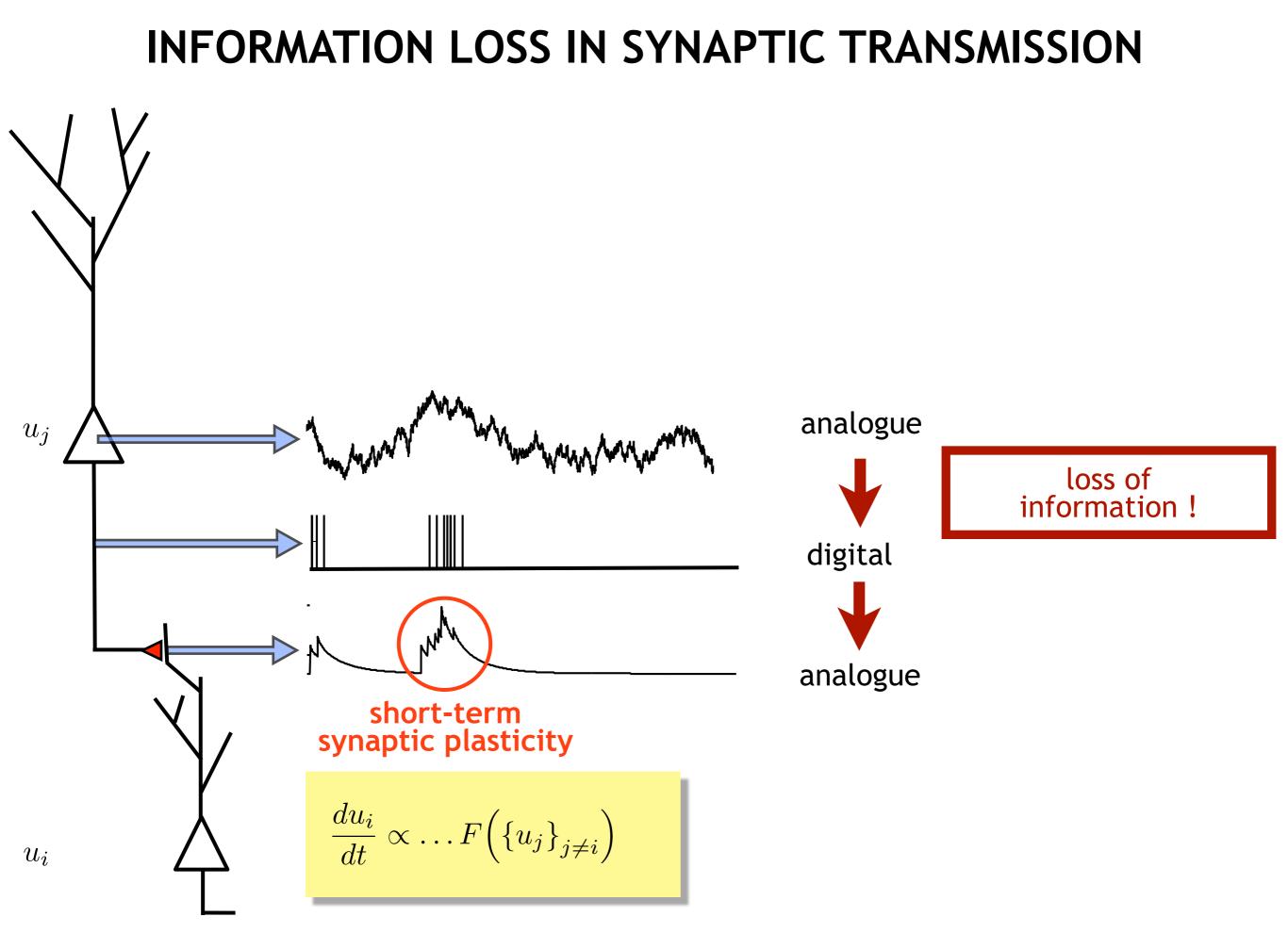




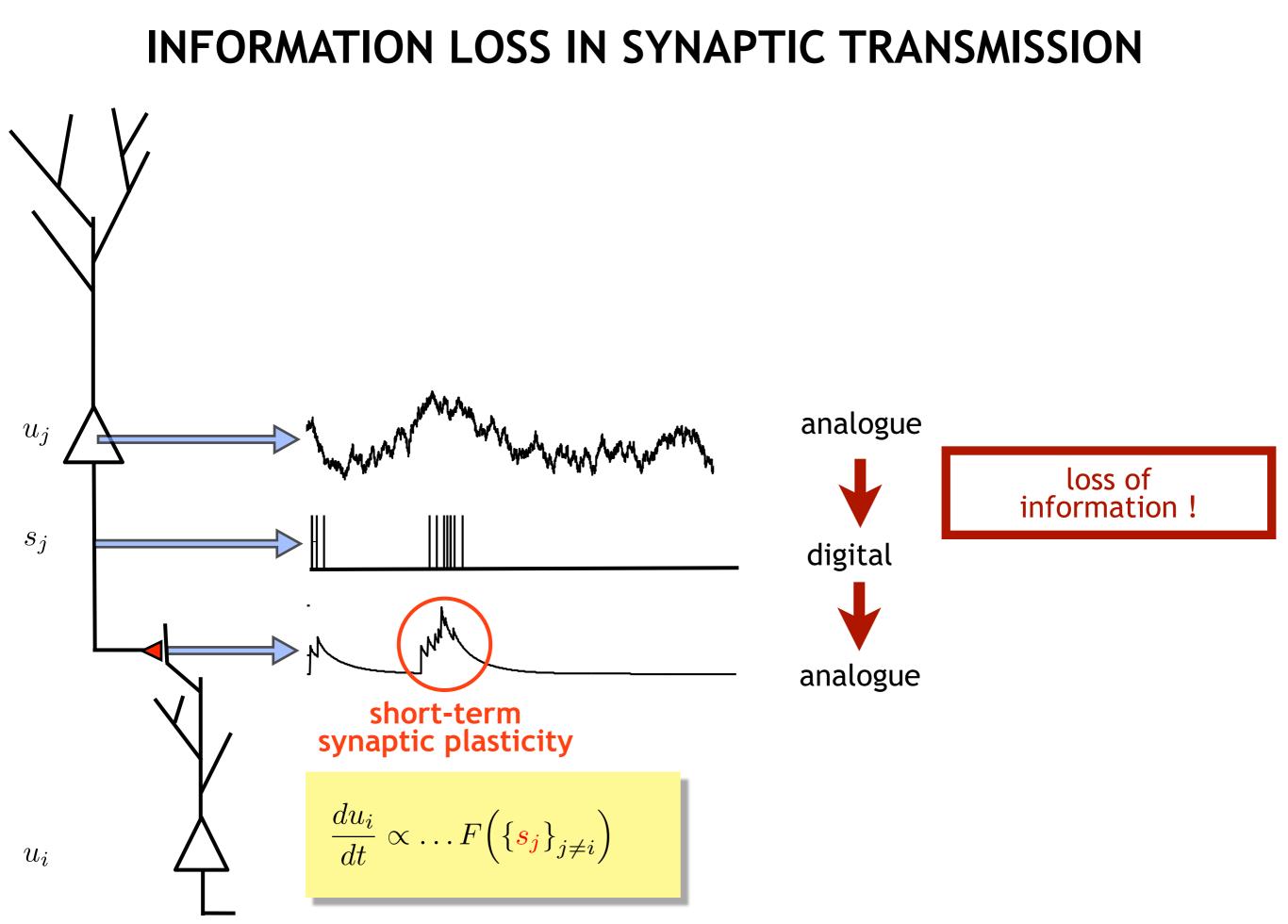


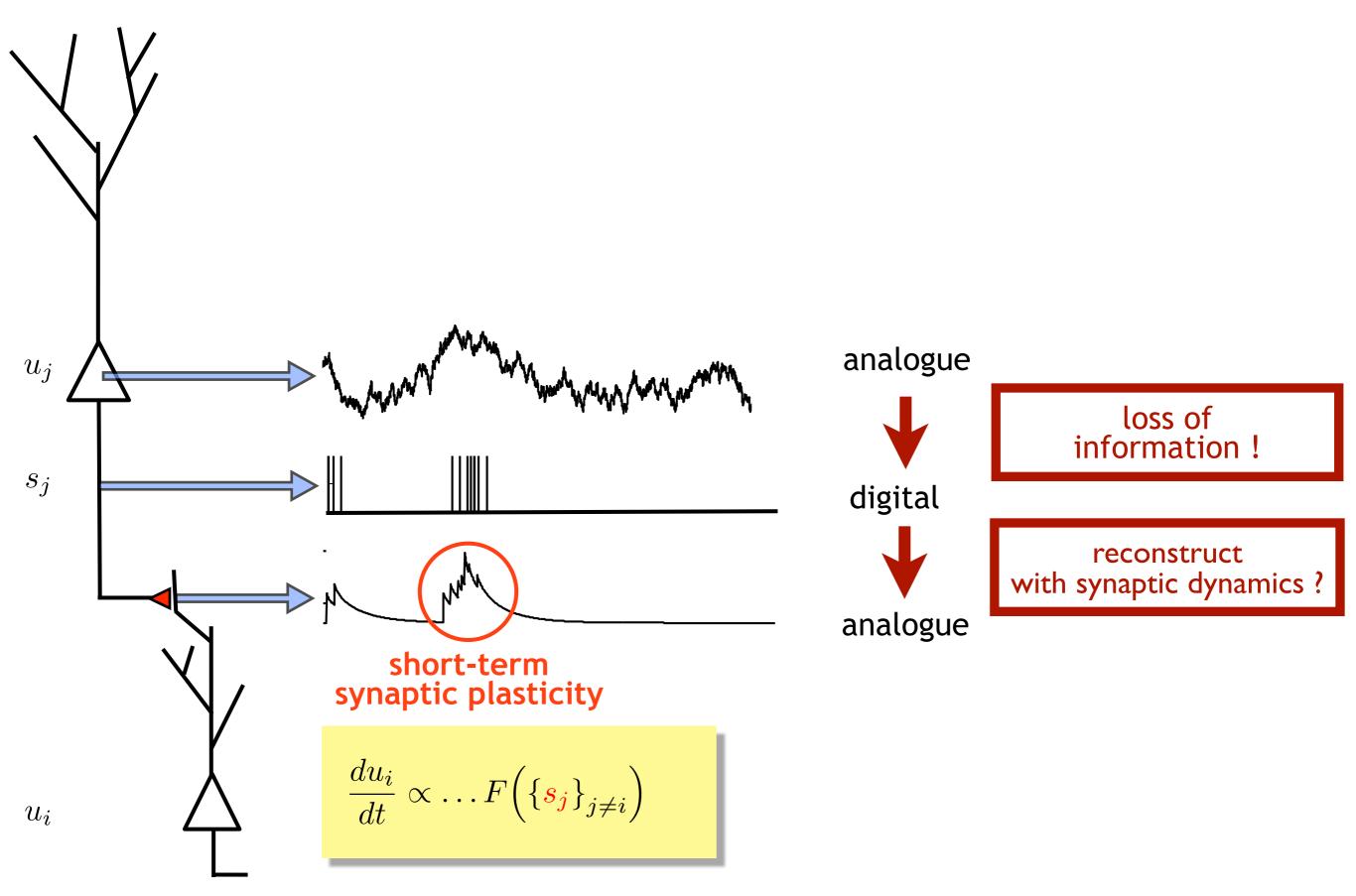
Máté Lengyel | Computational modelling of synaptic function

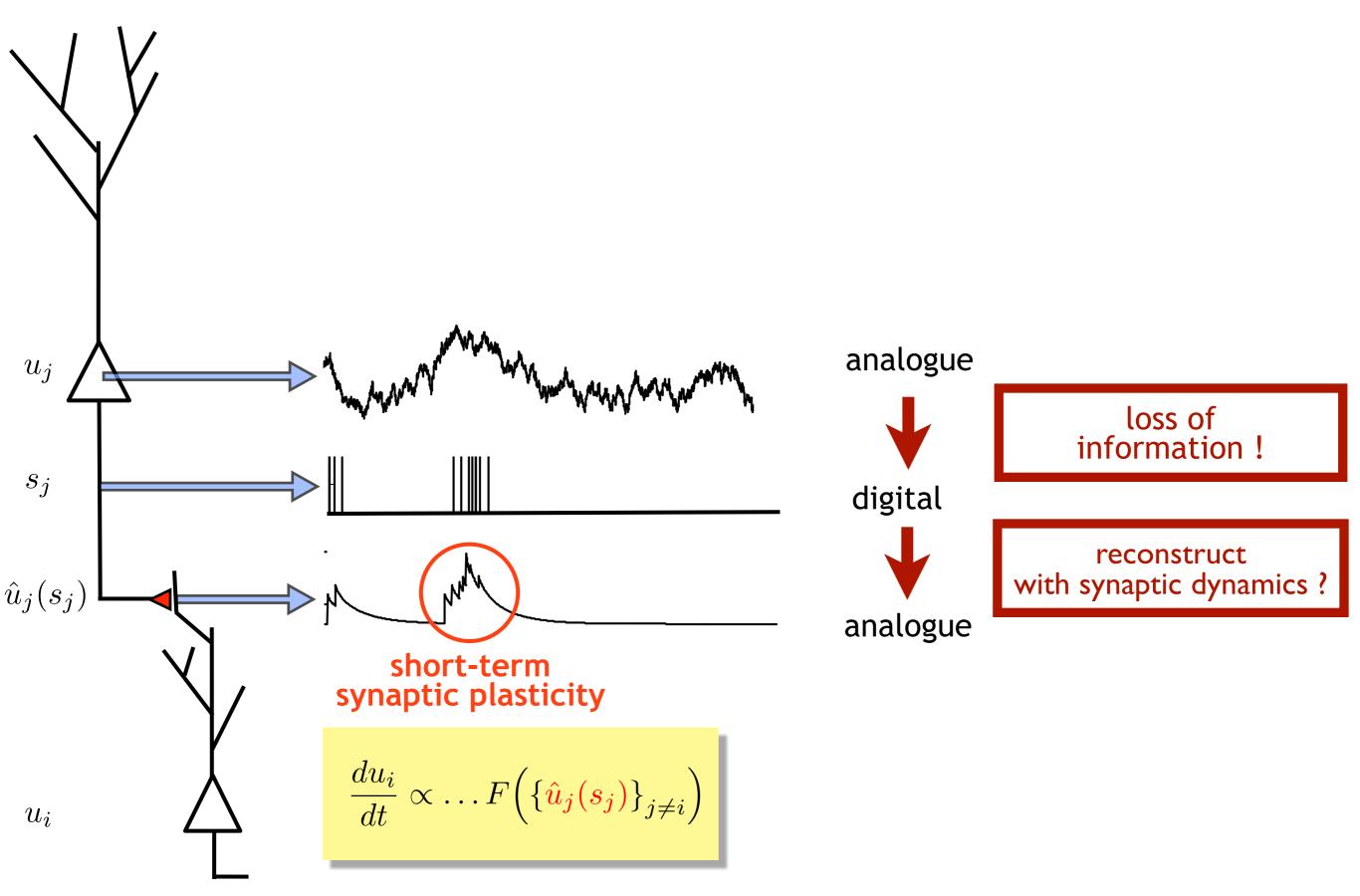


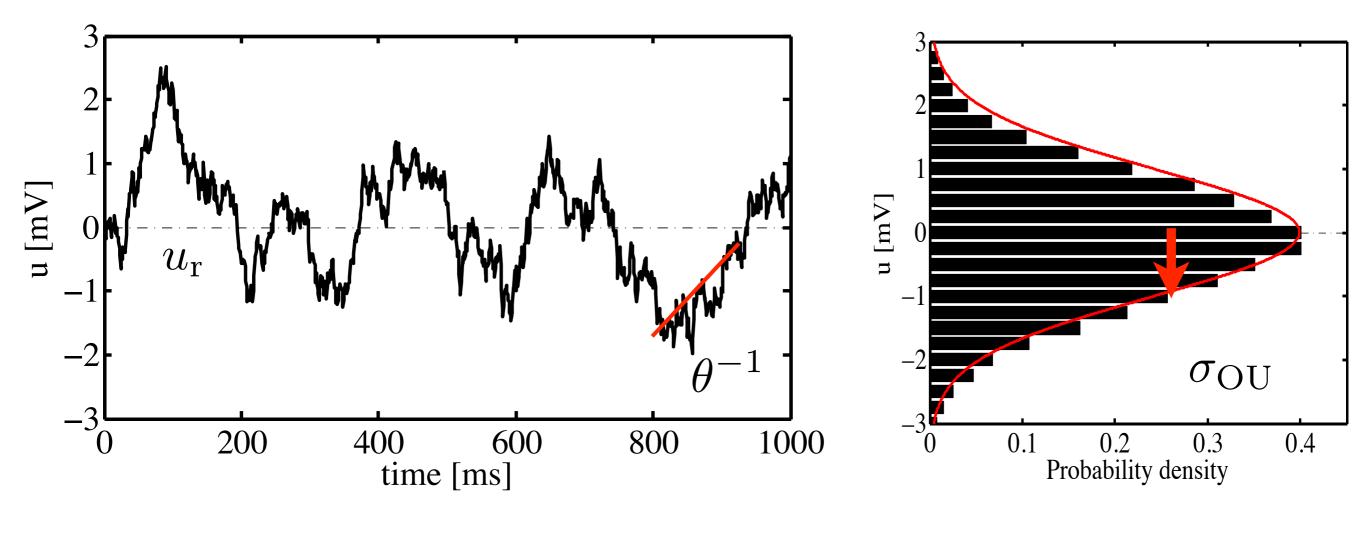


24

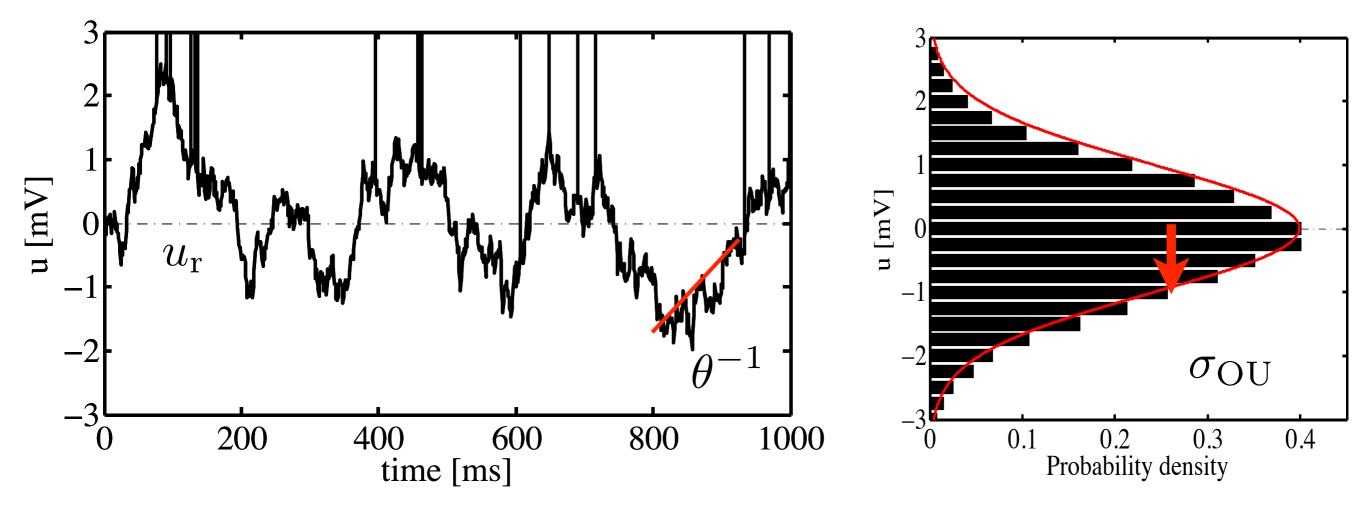






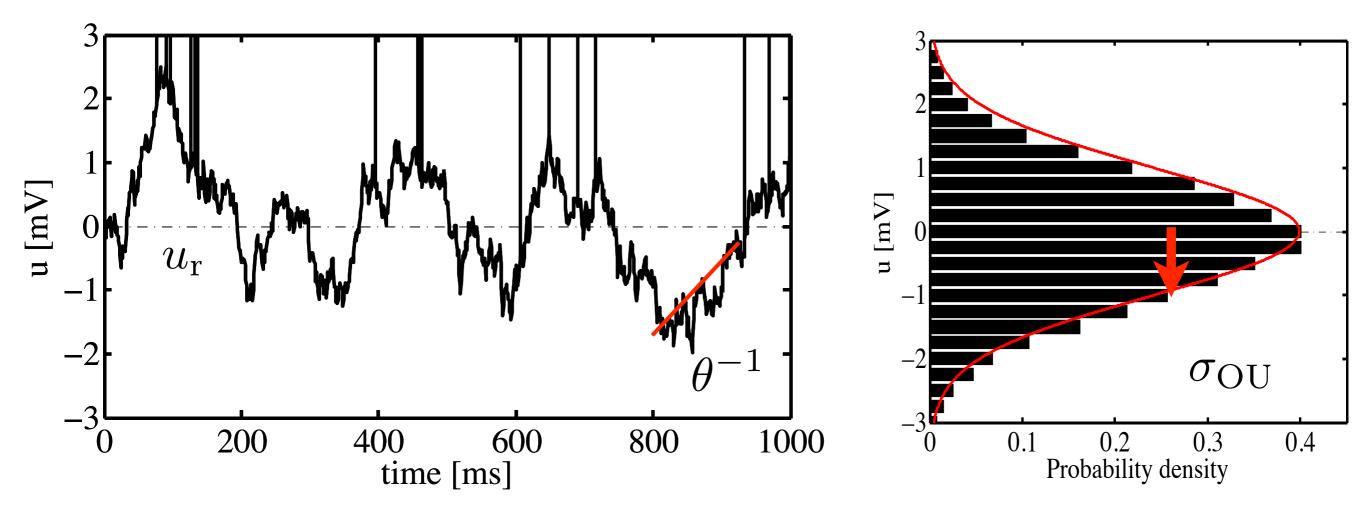


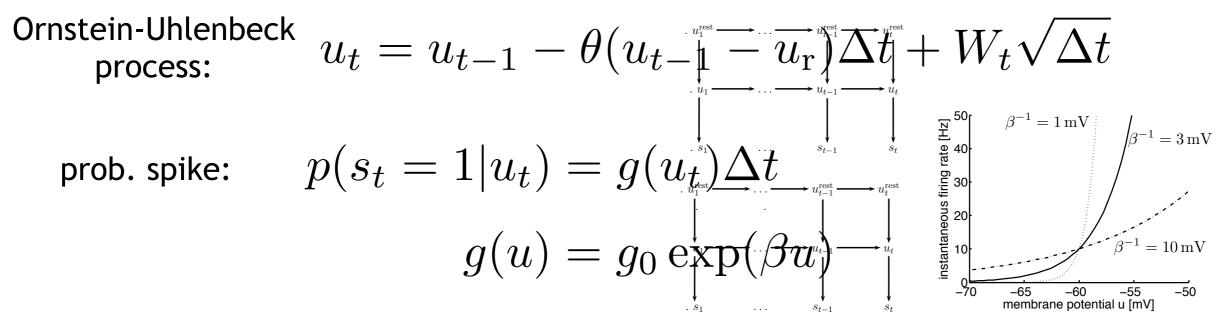
Ornstein-Uhlenbeck process: $u_t = u_{t-1} - \theta(u_{t-1} - u_r)\Delta t + W_t\sqrt{\Delta t}$



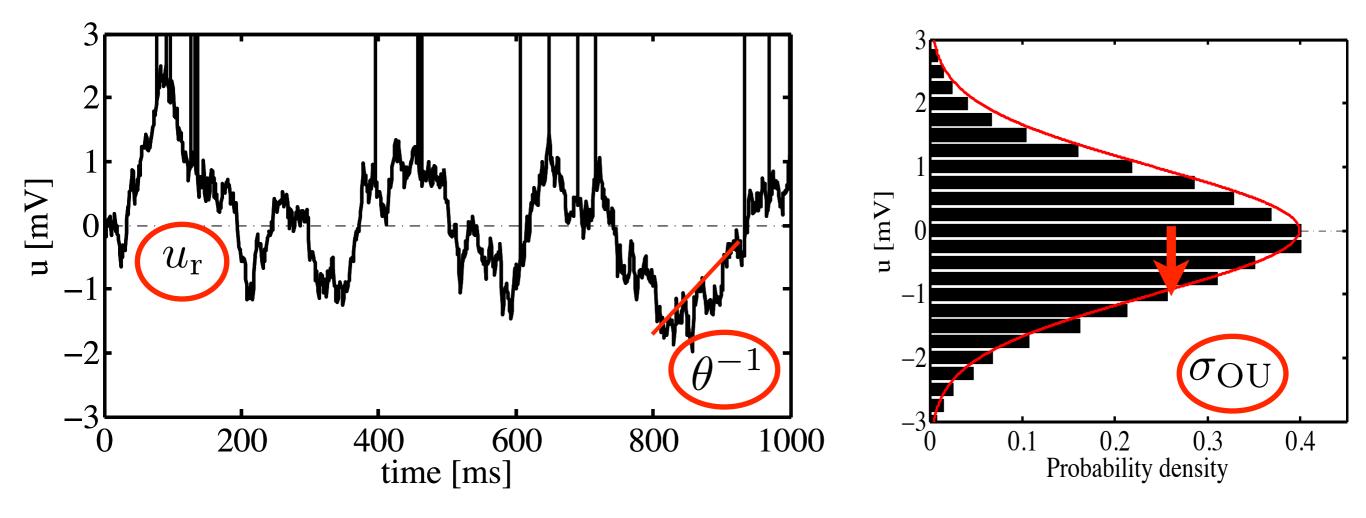
Ornstein-Uhlenbeck process: $u_t = u_{t-1} - \theta(u_{t-1} - u_r)\Delta t + W_t\sqrt{\Delta t}$

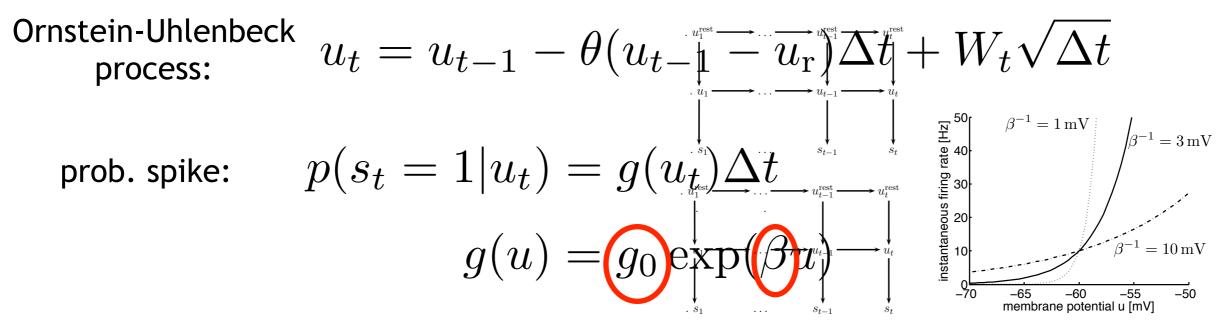
prob. spike: $p(s_t = 1 | u_t) = g(u_t) \Delta t$





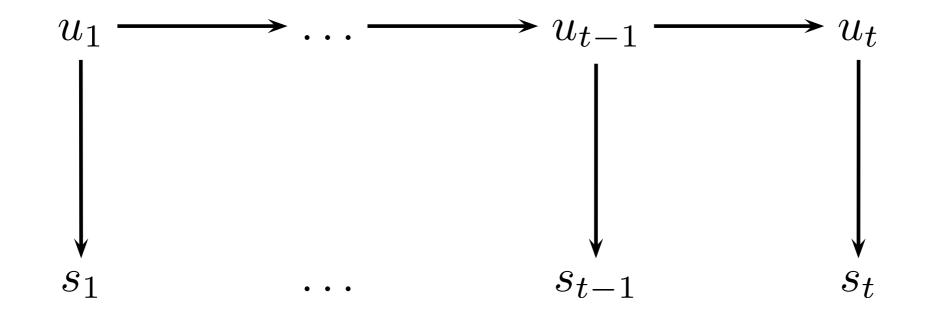
MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012





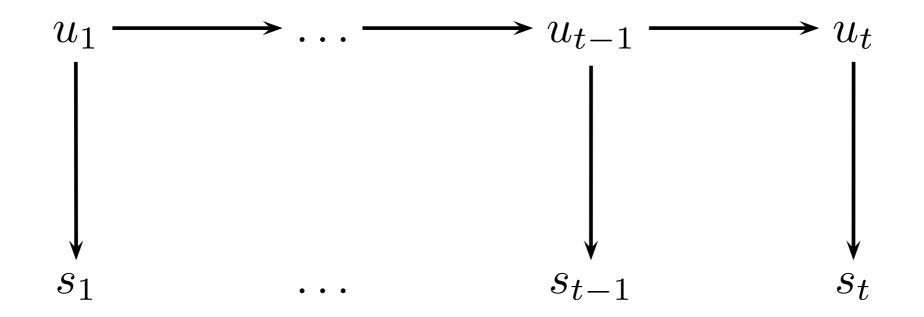
Máté Lengyel | Computational modelling of synaptic function

MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012

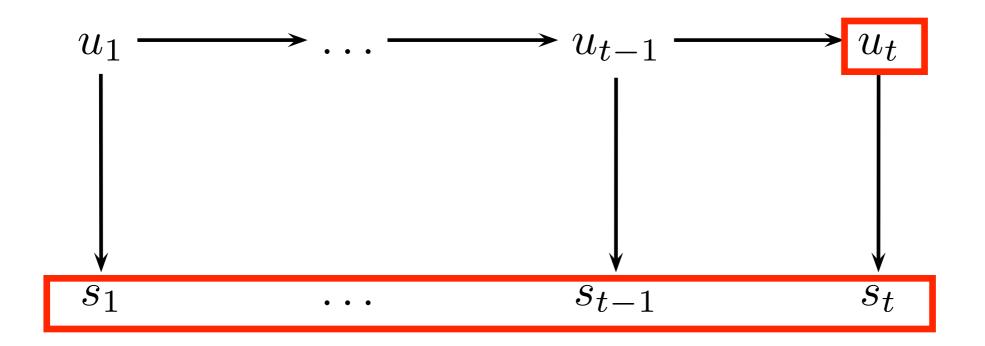


Ornstein-Uhlenbeck
$$u_t = u_{t-1} - \theta(u_{t-1} - u_r)\Delta t + W_t\sqrt{\Delta t}$$

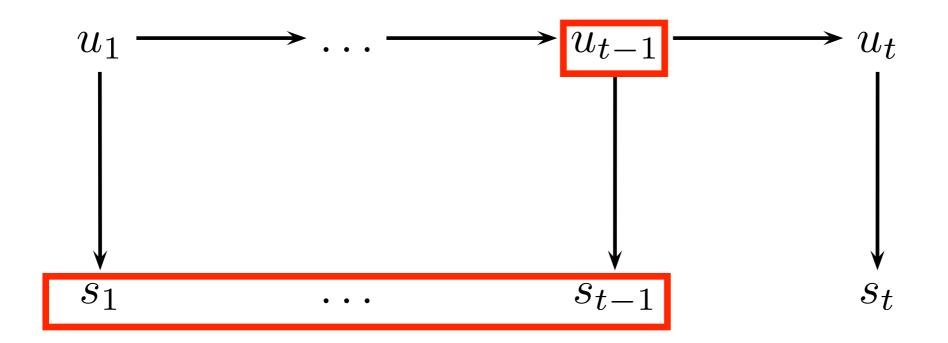
process: $p(s_t = 1|u_t) = g(u_t)\Delta t$
 $g(u) = g_0 \exp(\beta u)$



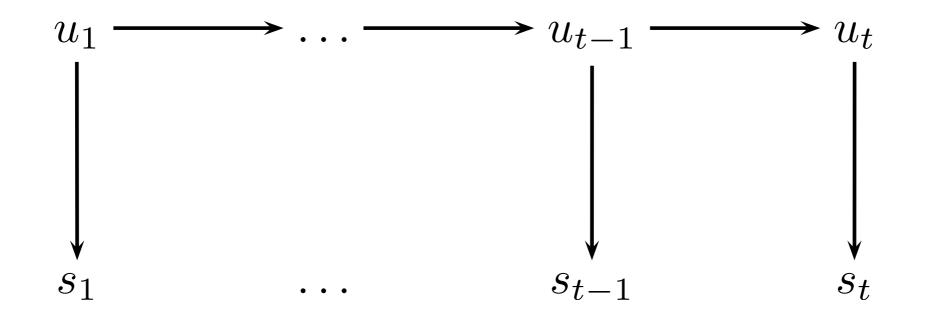
$$p(u_t|s_{1...t}) \propto p(s_t|u_t) \int p(u_t|u_{t-1}) p(u_{t-1}|s_{1...t-1}) du_{t-1}$$



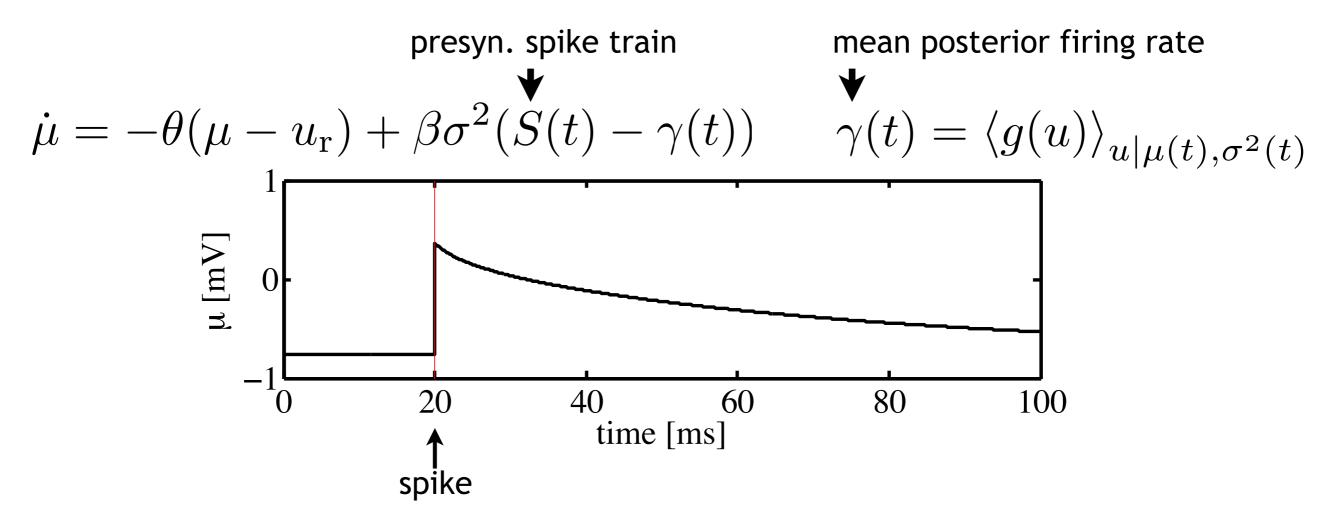
$$p(u_t|s_{1...t}) \propto p(s_t|u_t) \int p(u_t|u_{t-1}) p(u_{t-1}|s_{1...t-1}) du_{t-1}$$



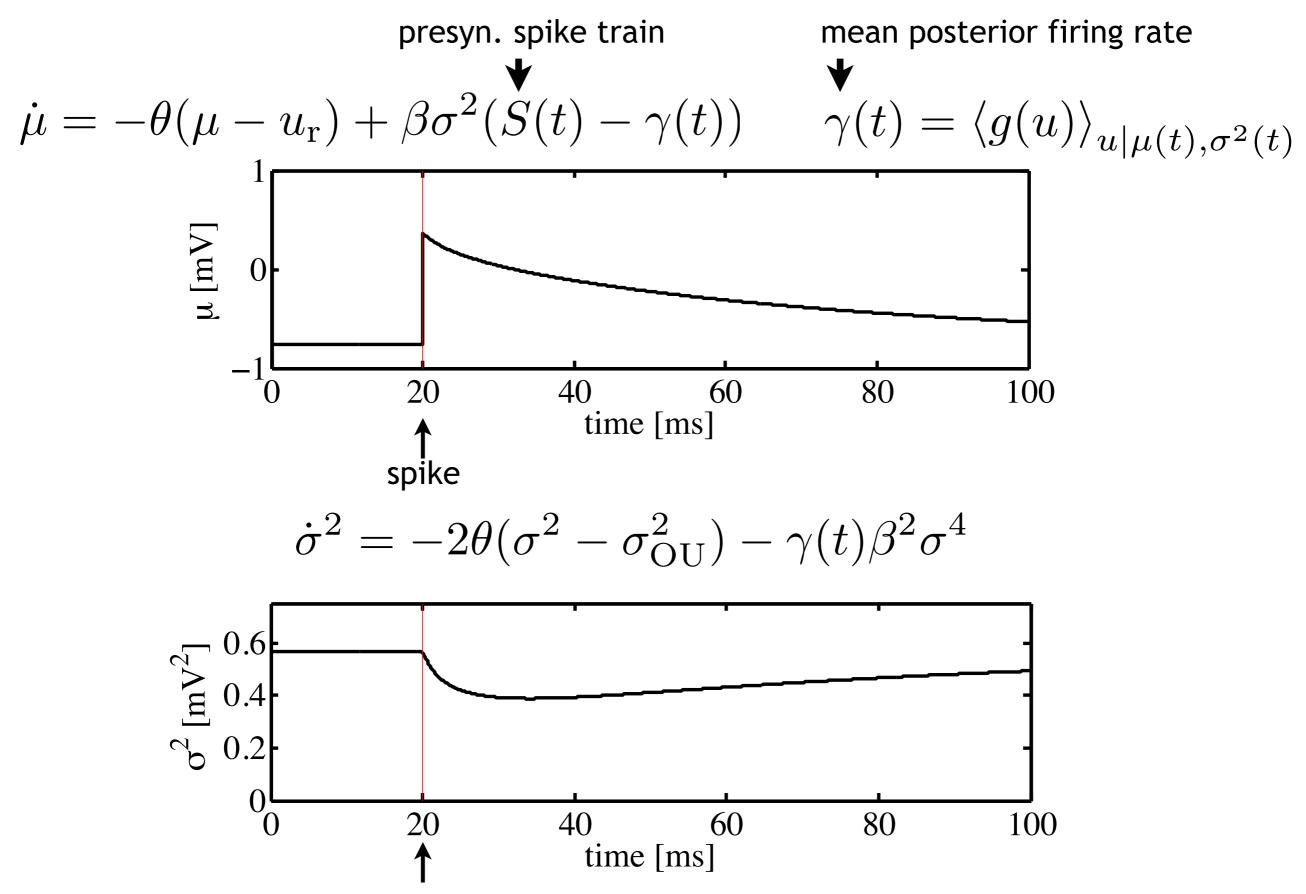
$$p(u_t|s_{1...t}) \propto p(s_t|u_t) \int p(u_t|u_{t-1}) p(u_{t-1}|s_{1...t-1}) du_{t-1}$$



DYNAMICS OF THE OPTIMAL ESTIMATOR



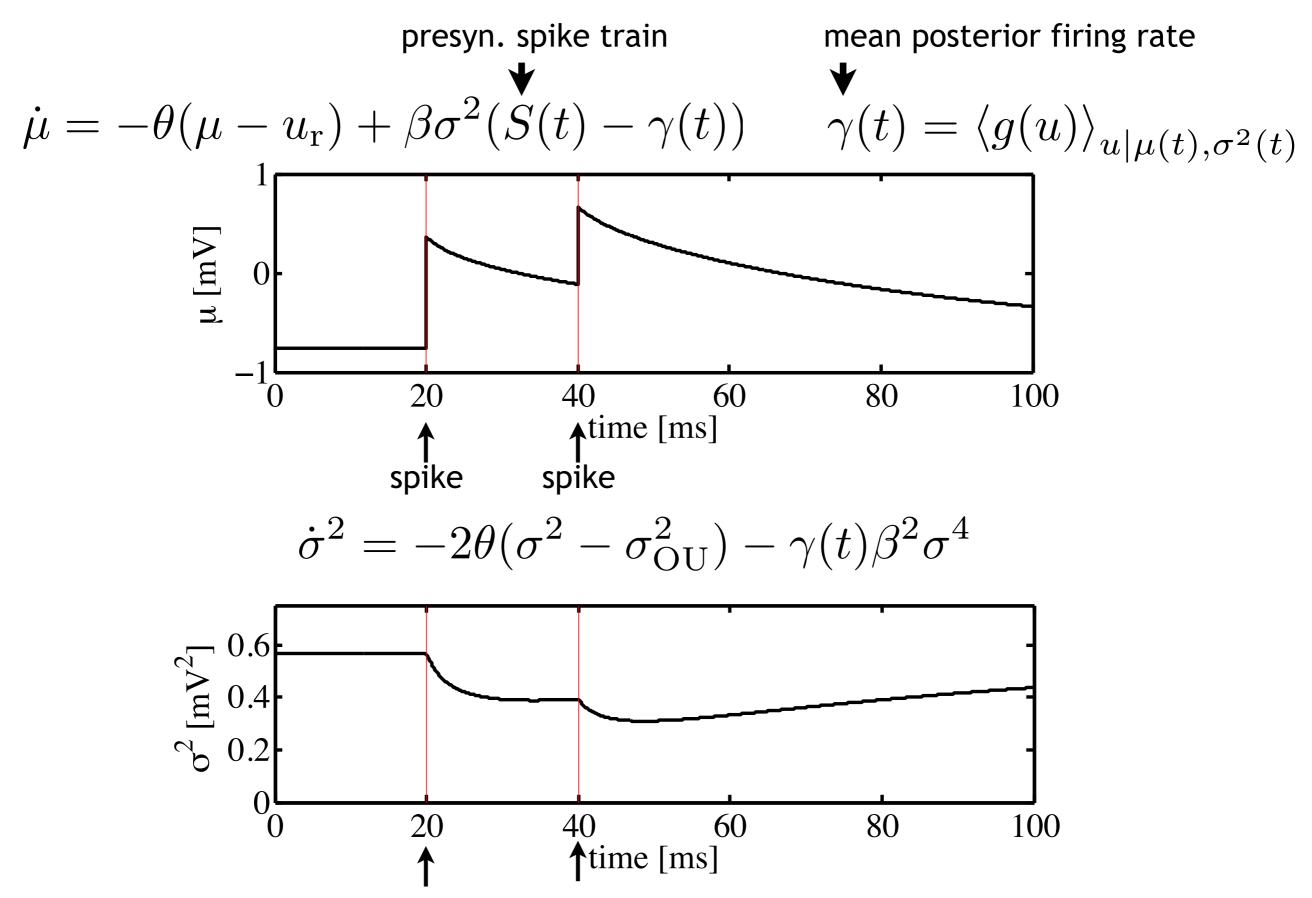
DYNAMICS OF THE OPTIMAL ESTIMATOR



Máté Lengyel | Computational modelling of synaptic function MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012 http://www.eng.cam.ac.uk/~m.lengyel

28

DYNAMICS OF THE OPTIMAL ESTIMATOR



Máté Lengyel | Computational modelling of synaptic function MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012 http://www.eng.cam.ac.uk/~m.lengyel

28

RELATION TO SHORT-TERM PLASTICITY

"biophysical" model of dynamic synapse

postsynaptic membrane potential

$$\frac{dv}{dt} = \frac{v_0 - v}{\tau_{\rm m}} + J x S(t)$$

synaptic resource

$$\frac{dx}{dt} = \frac{1-x}{\tau_{\rm D}} - Y \, x \, S(t)$$

Tsodyks et al., 1998

RELATION TO SHORT-TERM PLASTICITY

"biophysical" model of dynamic synapse

postsynaptic membrane potential

$$\frac{dv}{dt} = \frac{v_0 - v}{\tau_{\rm m}} + J x S(t)$$

synaptic resource

$$\frac{dx}{dt} = \frac{1-x}{\tau_{\rm D}} - Y \, x \, S(t)$$

Tsodyks et al., 1998

optimal estimator (in the limit)

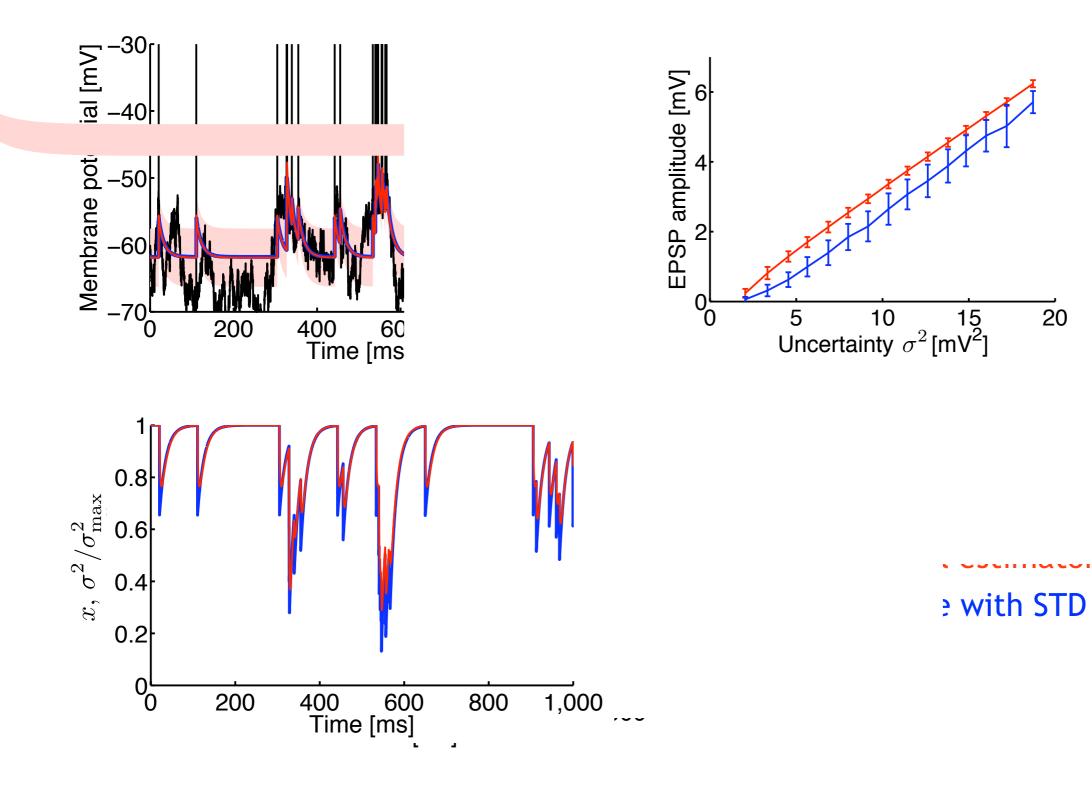
mean estimate

$$\frac{d\hat{u}}{dt} = \frac{\hat{u}_0 - \hat{u}}{\tau_{\rm m}} + J \,\sigma_{\rm u}^2 \,S(t)$$

estimator uncertainty

$$\frac{d\sigma_{\rm u}^2}{dt} = \frac{1 - \sigma_{\rm u}^2}{\tau_{\rm D}} - Y \,\sigma_{\rm u}^2 \,S(t)$$

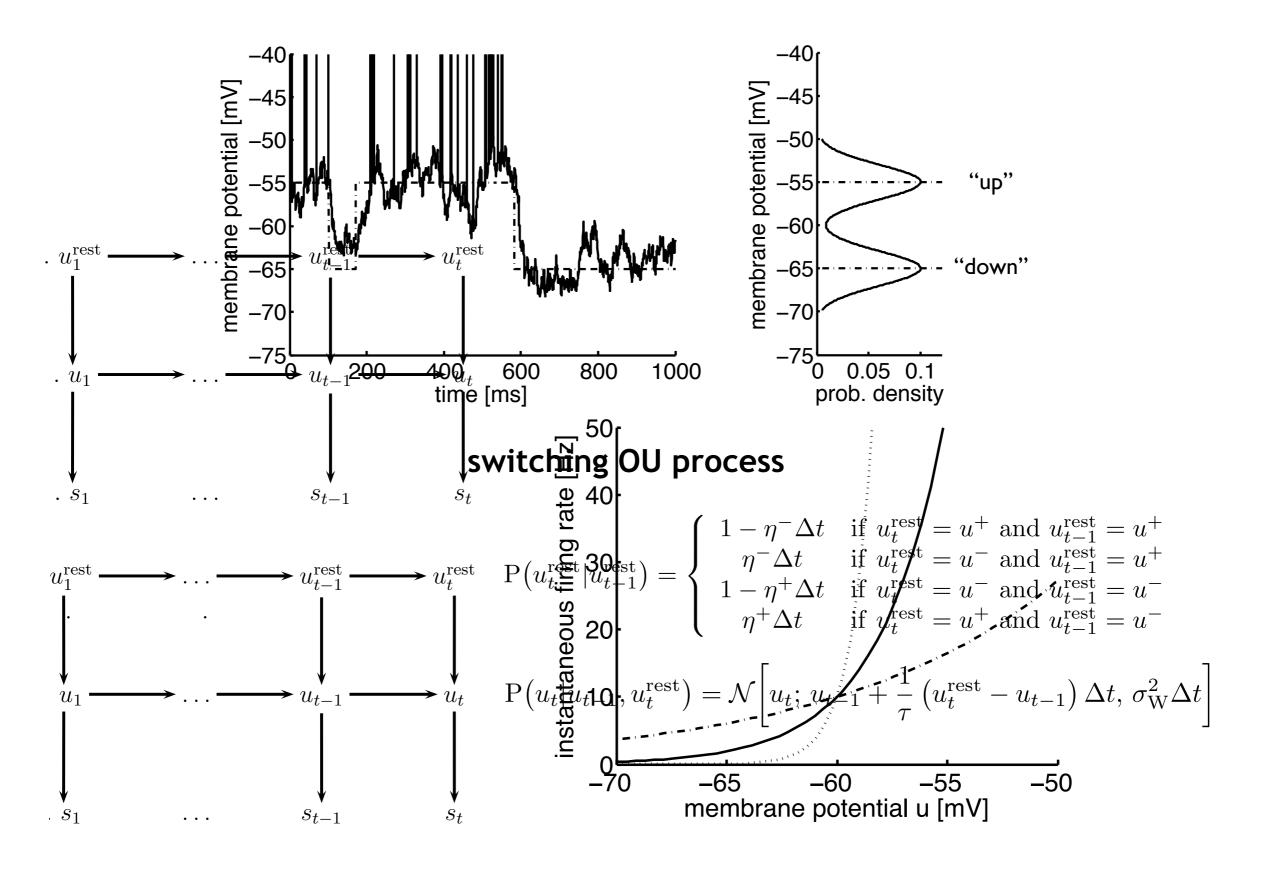
Pfister et al., NIPS 2009 Pfister et al., Nat Neurosci 2010



AN EXTENSION: "UP" AND "DOWN"

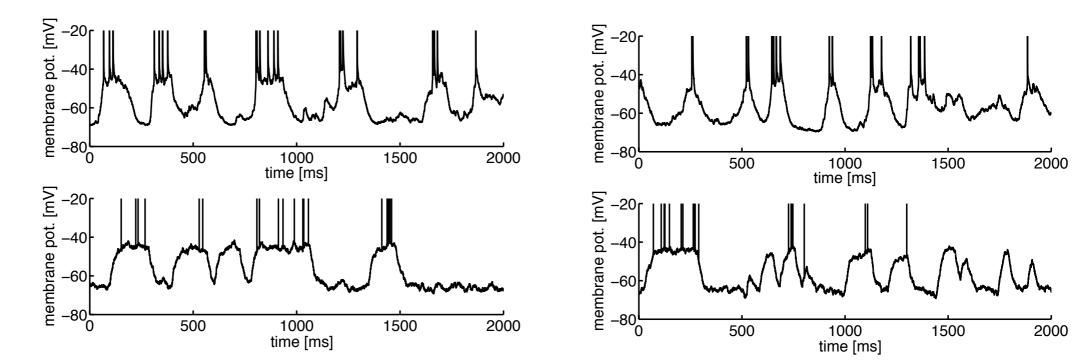


AN EXTENSION: "UP" AND "DOWN"

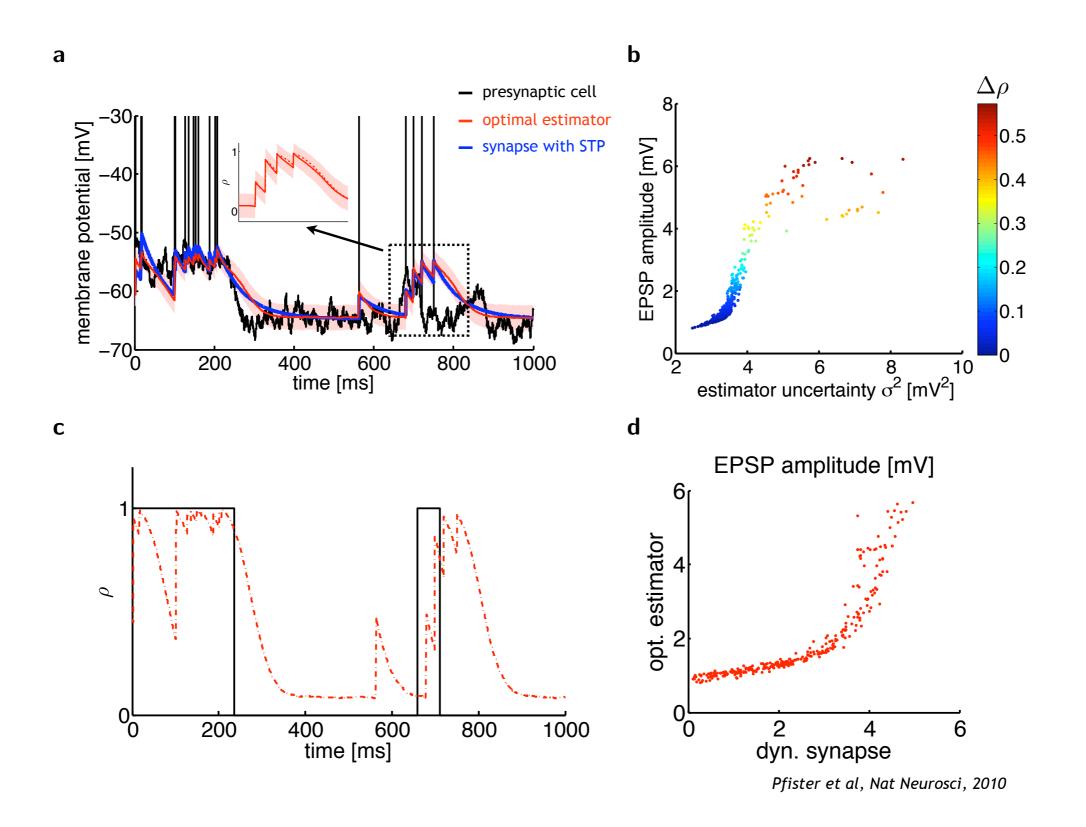


THE SWITCHING OU PROCESS

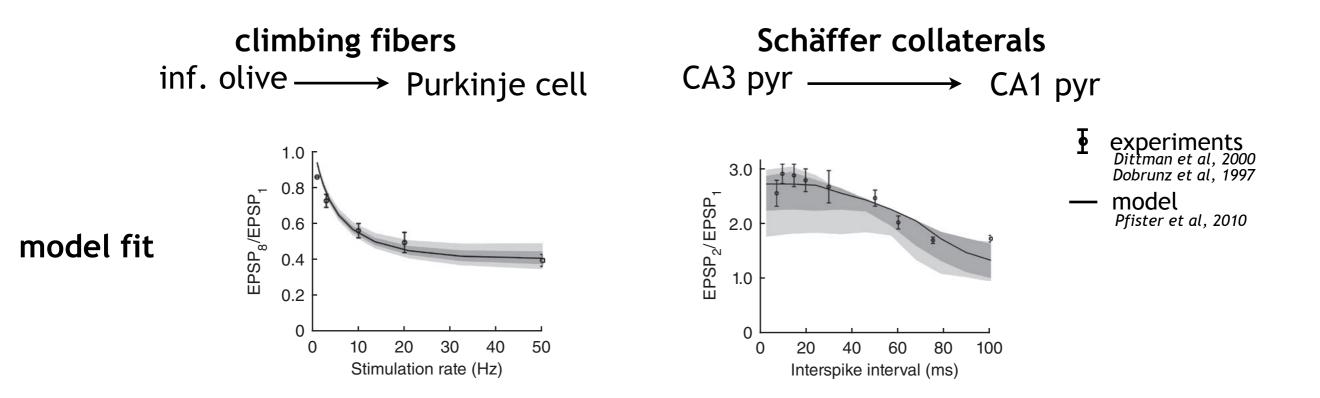
Gentet et al, 2010



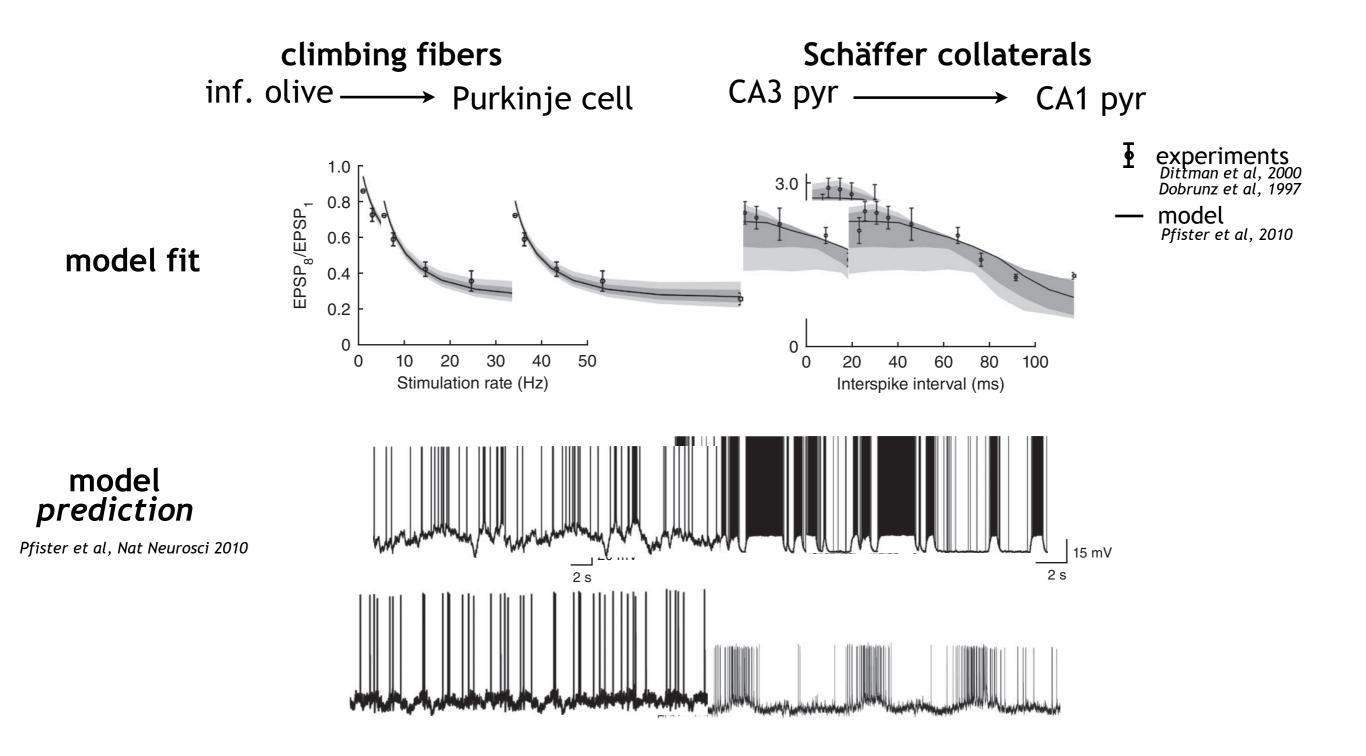
SYNAPSES WITH STP AS OPTIMAL ESTIMATORS



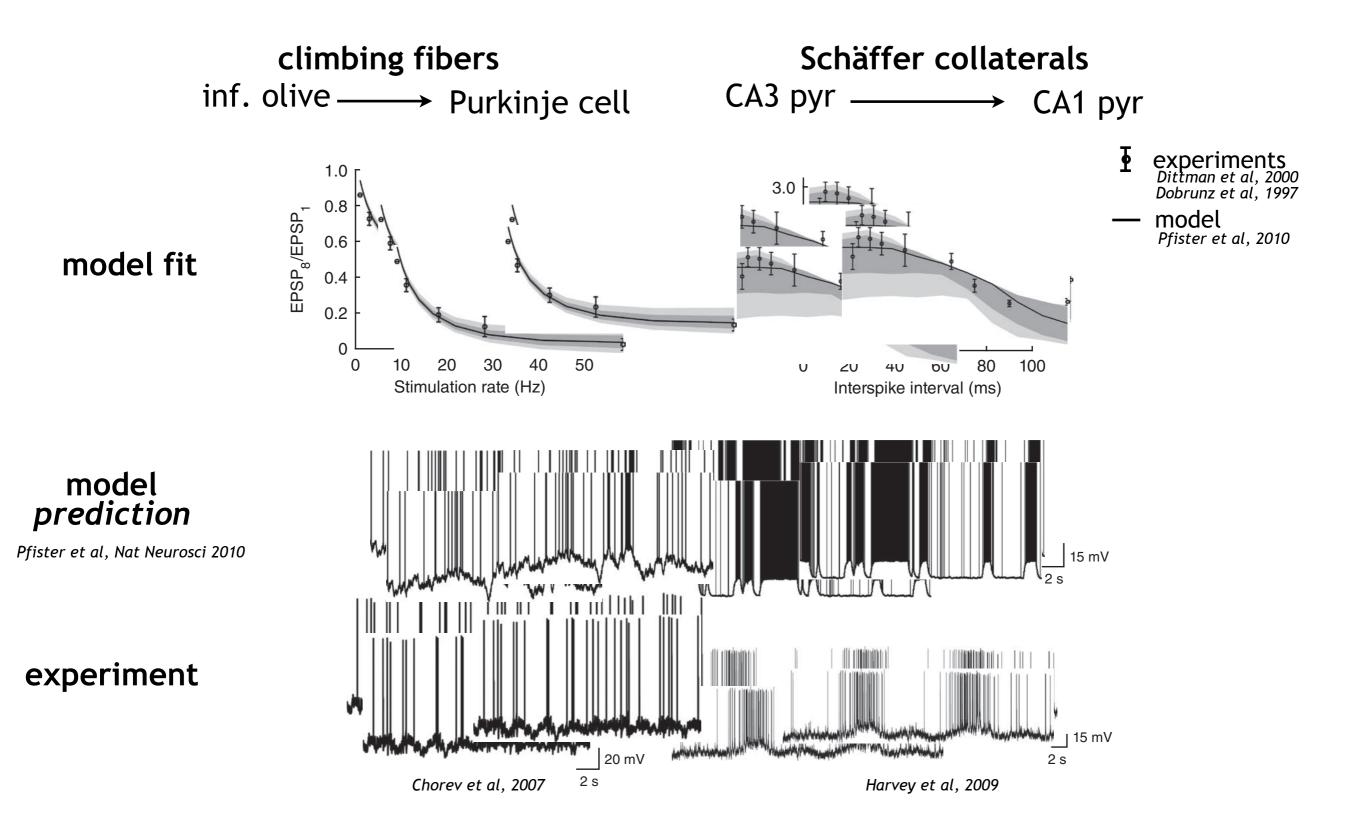
MATCHING STP PARAMETERS TO NATURAL MEMBRANE POTENTIAL STATISTICS



MATCHING STP PARAMETERS TO NATURAL MEMBRANE POTENTIAL STATISTICS

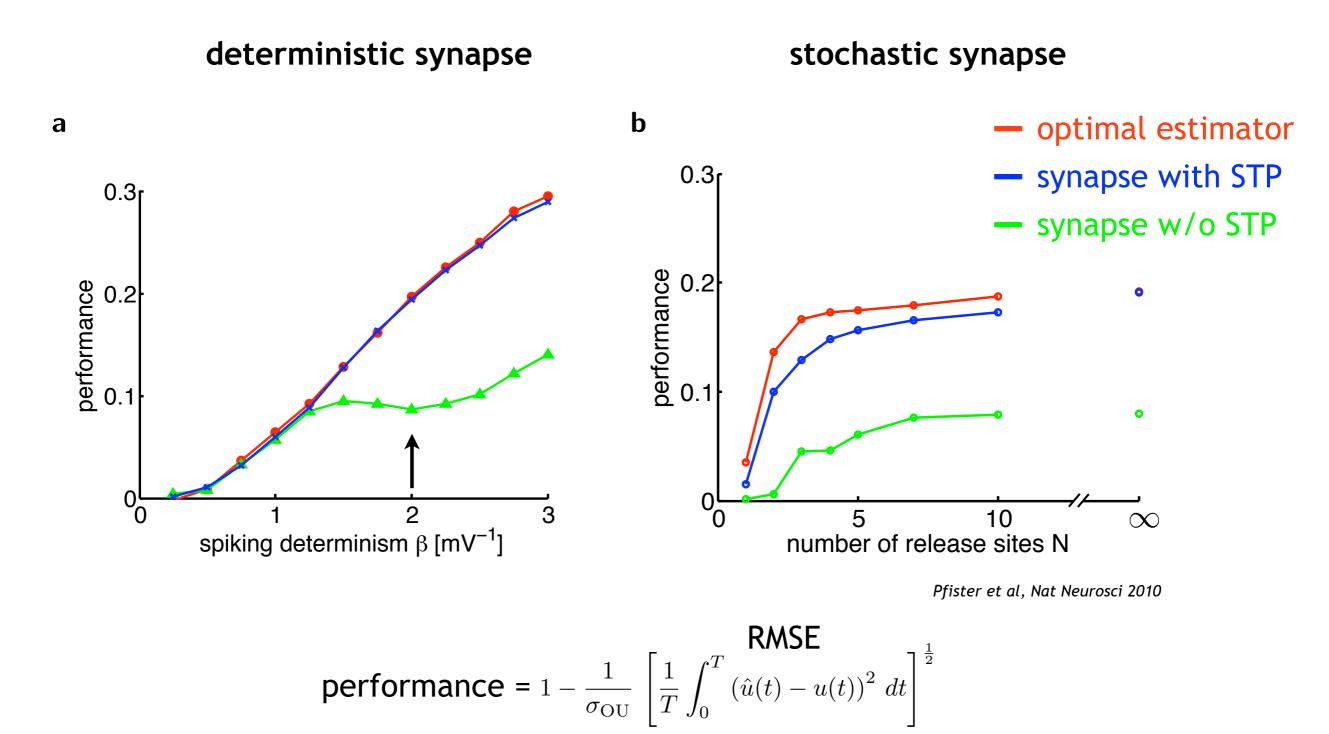


MATCHING STP PARAMETERS TO NATURAL MEMBRANE POTENTIAL STATISTICS



Máté Lengyel | Computational modelling of synaptic function MPS-UCL Symposium on Computational Psychiatry, 18 Sept 2012 http://www.eng.cam.ac.uk/~m.lengyel 34

THE ADVANTAGE OF STP



ACKNOWLEDGEMENTS

Cristina Savin

Jean-Pascal Pfister

COLLABORATORS

theory

Peter Dayan Gatsby, UCL *in vitro* experiments Ole Paulsen Jeehyun Kwag *U Oxford*

FUNDING

wellcome^{trust}

Investigator