Development of a noisy brain
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The Language of Networks

« Key principles that help discuss networks
— Small-world architecture
— Connector & Provincial Hubs
— Complexity
— Integration & Segregation
— Neural context and embeddeness



Functional and anatomical

features
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Independent Degenerate Redundant

Maximum Complexity
Optimal ability to
differeniate and integrate

Tononi, Sporns & Edelman, PNAS, 1999



Function, anatomy, complexity

sparse coupling
high disorder

low complexity

uniform coupling

high order

low complexity

local/global coupling
4] Mix order/disorder

high complexity




Optimizing complexity

Integration Complexity
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Sporns, Tononi1 & Edelman, Cerebral Cortex, 2000



Sources of noise 1n the brain

a Sensory noise

b cellular noise

Electrical noise

Sensory transduction and amplification

¢ Motor noise

Muscle

"|Receptor [.

neyrcn

*. Voltage-gated

. ion channel

Motor neuron

Spinal cord

Excitable membrane

.| MNetwork of neurons

Synaptic noise -

Faisal, Selen, & Wolpert, Nature Rev Neuro, 2008




Stochastic Resonance
Linear vs Nonlinear Systems

* A small amount of noise is
beneficial in detecting weak
signals

* Noise also beneficial in
transmitting signals between
neurons

ex=»|_inear
ecseNonlinear
e For dynamic systems, optimal

noise necessary to maintain
multistable state

— Complexity & noise are related _

— Behavioural/cognitive .
repertoire Noise level

P(Signal Detected)




tochastic Resonance
Lena & white noise

13

Mitaim & Kosko, Proc IEEE, 1998



Systems with complex structure
generate “noisier’’ signals

Structural Temporal
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“Noisy” nodes
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Towards the virtual brain: network modeling of

the infact and the damaged brain

V.K. JIRSA!, O. SPORNS?, M. BREAKSPEAR?*4, G. DECO?, A.R. MCINTOSH?

Nodes connections & placement based
on neuroanatomy

Nonlinear equations characterize
dynamics at each node

Model produces realistic activity
measures such as EEG and fMRI
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http.//www.thevirtualbrain.org THEVIRTUALBRAIN.




Intrinsic Dynamics (Resting State) Model

Connectivity _ _
Structural connection matrix of regions Extracting Functional Networks
of macaque neocortex connected by

inter-regional pathways. When using long samples (~240

secs.), transfer entropy functional
networks show high overlap with

Dynamics the underlying structural network

Neural mass model

Honey, Breakspear, Kotter, Sporns (2007) PNAS



Intrinsic Dynamics (Resting State) Model

Functional Networks form a Variable Repertoire

Over shorter time scales, functional connectivity patterns show significant variations

degree corrs structural connections
4 HFS-!"I"'I

functional connections
t=78

— —
72 seconds 60 seconds 48 seconds

Honey, Breakspear, Kotter, Sporns (2007) PNAS




Space time structure of couplings.

Ghosh A, Rho Y, McIntosh AR, Koétter R, et al. (2008)




Stability regimes

©
o
1

Instability

15 7.5 49 37 0.0096

H
‘.

Connectivity C

UNSTABLE

STABLE

"

60

15
velocity V (m/s)

75 495 37

05
15
"

';n'.("‘.LL A‘\"\.«C_\t 1 Al Vv A AN W IANAA A v

0.5
151

Baa
LARGE NOISE

2400

time (ms)




PCA of the network dynamics close to the instability
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Influence of noise on intrinsic
activity and large-scale oscillations

-t\ Power

(a)

-t | Frequency

Deco, Jirsa, Mclntosh, Sporns & Kotter, PNAS, 2009 f Correlation

Deco, Jirsa & MclIntosh, Nature Rev Neurosci, 2011
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Ongoing Cortical Activity at Rest: Criticality, Multistability,
and Ghost Attractors

Excitatory

Inhibitory
pools

Deco G, Jirsa V K J. Neurosci. 2012;32:3366-3375

mnampmemen [ he Journal of Neuroscience




Empirically-derived Neuroanatomical Connectivity matrix obtained by DSI
tractography and functional connectivity matrix

a
Neuroanatomical Connectivity Matrix Empirical Functional Connectivity Matrix
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Mean-field analyses of the attractor landscape as a function of the global
inter-areal coupling strength.
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Fitting of empirical data as measured by the correlation of functional
connectivity as a function of the global coupling parameter W.
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Deco G, Jirsa V K J. Neurosci. 2012;32:3366-3375



Detailed comparison between the neuroanatomical connectivity matrix, the empirical and the
simulated functional connectivity for the working point W = Wc = 1.6 at the edge of the
bifurcation. a, Left, Functional connectivity matrix based on the firing rates...

FC neuronal dynamics (model)
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Deco G, JirsaV K J. Neurosci. 2012;32:3366-3375

e [ 1€ Journal of Neuroscience

FC BOLD (model)

10 20 30 40
Cortical region

-n
(2]
3
o
a
(]

Cortical region

FC BOLD (empirical)

20 30 40 50 60
Cortical region

Corr seeds



Beneficial effects of brain noise 1s not a new i1dea

e 46 years ago: Lawrence Pinneo
(PsychReview, 1966)

— Neural variability “is not merely
noise ” (p 245); it enables the stab
and functional output of a neural
system = TONIC activity!

— ...variability is in fact, the
“functional substrate of the
brain” (p242)

Psyclwlviical Review
1966, Vol. 73, No. 3, 242-247

ON NOISE IN THE NERVOUS SYSTEM*

LAWRENCE R. PINNEO

Delta Regional Primate Research Center, Tulane University

Treisman and Hebb have suggested that “spontaneous,” “random,” or
“background” activity in the nervous system constitutes “noise” in
discrimination and learning; that is, this type of activity has no func-
tional value to the organism. This paper attempts to show that tonic
activity, a term including all of the types of activity listed above, is
rather the functional substrate of the brain. Examples are cited for
the skeletal and autonomic motor systems, the primary sensory systems,
and the diffuse ascending and descending reticular activating systems
to show that the tonic activity in the entire brain enters into all
discrimination and learning, and, in agreement with Lashley, represents

the neural basis of behavior.

Two recent theoretical papers have ar-
gued that “noise” in the nervous system
has interfering effects in discrimination
and learning. In one, Treisman (1964)
has suggested that three sources of noise
limit discrimination: (@) the irreducible
physical variability of the stimulus, (b)
the “spontaneous” neural background ac-
tivity to which a stimulus is added, and
(¢) the neural noise arising from varia-
tion in the pathways transmitting mes-
sages centrally, Based on these three
sources of noise, Treisman has worked
out a complicated signal-detection theory
to explain the form of the Weber function
for visual intensity discrimination and
for other sense dimensions.

In the other paper, Hebb (1961) raised
the question of the interfering effects of
random activity in the nervous system
during learning of a specific task. By
learning he meant the modification of
the direction of transmission in the cen-
tral nervous system (CNS) at the syn-
apse. He pointed out that a large brain
such as a mammal’s has many more
neurons present than are necessary for
learning a specific task. Therefore, ran-
dom activity in the neurons not involved
in learning the task constitutes noise,
which Hebb felt must interfere with
learning.

1This work was supported by National
Institutes of Health, United States Public
Health Service Grants FR-00164-03 and
NB-04951-01.

These two papers illustrate a widely
held misconception of brain function,
namely, that the spontaneous, random, or
background discharge of neurons has lit-
tle or no functional value; that is, this
activity has no information value for the
organism and therefore is noise in the
communications sense of the word. In
this theoretical note I attempt to show
that the neural noise to which Treisman
and Hebb refer (leaving out Treisman’s
first category) is not noise at all, that this
neural activity does not limit discrimina-
tion nor interfere with learning, and that
in fact this activity is essential to dis-
crimination and learning.

Arduini (1963) has suggested that
there are fundamentally two types of
nervous discharge, and he has carefully
defined them ; his definitions will be used
in this paper. Borrowing from the ter-
minology applied to muscle activity, Ar-
duini defines “phasic” activity as a tran-
sient increase or decrease in impulse
firing rates of neurons that is time locked
to a particular stimulus. A familiar ex-
ample is the evoked response. “Tonic”
activity on the other hand is nontransient,
or continuous, neural discharge in which
the average firing rate is random and
constant and is nof time locked to a
stimulus. So-called spontaneous activity
(a dubious term at best since it implies
the discharge of neurons without benefit
of influences external to the neurons),

242




Tonic vs. phasic activity

e “Phasic” or stimulus-driven
activity argued to operate on
existing tonic activity to allow
behaviours of 1nterest.

— This conceptualization reaches
back at least to Lashley (1951).

Tonic activity 1s the basis
of the human mind!
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Noise & Variability 1n the Brain

o If “brain noise” reflect the brain’ s
repertoire, 1t should change with maturation

— Can developmental changes be partly
accounted for by changing noise structure?

* Hypothesis:

— Early maturation may lead to an increase in
internal noise

— The behavior of the aging nervous system 1s
consistent with a reduction 1n internal noise.



Maturation & Brain Variability

Upright Megative Inverted

350 ms

Mclintosh, Kovacevic & Itier, PLoS Comp Biol, 2008



How do we measure variability?

2.

Reduced internal noise should relate to reduced
variance 1n measured physiological signal

Look at number of dimensions (PCA) needed to
capture ~90% variance in an individual's brain
data

How predictable is the signal across trials?

Look at temporal dependency - multiscale
entropy (MSE)

How predictable 1s the signal at different timescales?



Multiscale Entropy

Multiscale entropy (MSE)

Sample entropy Down-sampling
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Maturation & Brain Variability
PCA dimensionality estimation
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Maturation & Brain Complexity
Multiscale Entropy

3 4 5 6 7 g 9 1 11 12 13 14

fine — Scale - coarse



Behavioural stability & brain variabilit

Negative correlation @ 0
between brain

-0.6 -0.5 -0.3 -0.6 -0.5-0.3 -0.7-0.6 -0.4

variability and
stable RT

(no correlation with
mean RT)

MSE area baseline PCA post-baseline PCA

Positive correlation
between brain

variability and
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Face perception & Maturation
MEG data show same developmental trend and
relation to behavior

Temporal Scale

Misic et al, J] Neurophys, 2010



Face perception & Maturation
MEG data show same developmental trend and
relation to behavior

Upright

0.6 | Upright

nveried
{ B Inverted
0.4 B |
0.2 i

Correlation with MSE

I

Age Accuracy MeanRT cvRT

Misic et al, J] Neurophys, 2010



Stimulus-dependent differences in MSE

Upright

Inverted

I illi
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What about babies?

Participants
e | weekto5 %
* 75 infants an

e |5 adults

Lippé S, Kovacevic




Babies
Entropy increases with age

:] Adults
- 24-66 mo
- 9-24 mo
|:| 2-8 mo

-1-2 mo

Temporal scales

Lippé S, Kovacevic N, Mclntosh AR, Front Neuro, 2009



Babies
Entropy increases with age differentially by
sensory modality

1-2 mo (p=0.08) Z-8 mo (p=0) 3-24 mo (p=0.01)
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Lippé S, Kovacevic N, Mclntosh AR, Front Neuro, 2009



Can we parse entropy 1nto local
and distributed sources?




Variability of Brain Signals Processed Locally Transforms
into Higher Connectivity with Brain Development

.

Vasily A. Vakorin,' Sarah Lippé,? and Anthony R. McIntosh!3

Auditory

20
1-2 2-8 9-24 24—66‘\ |
Age Groups

1-2 2-8 9-2424-66 *39

64,28 o 120 -
Age Groups .25"2L 1

a5 .20 +21°12 +5 405

J Neuroscience, 2011



Local entropy
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Vakorin, Lippé et Mclntosh, 2011 Journal of Neuroscience



Network dynamics and maturation
Behavioral stability & brain noise

» Behavior stability increases with maturation

* Neurophysiological variability also increases with
maturation

* Development brings a transition from a brain that
1s deterministic to one that is more stochastic, but
adaptive

— Paradoxical negative correlation between behavioral
and brain variability
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Aging & Brain Noise
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Intra-individual variability in
behavior: links to brain structure,
neurotransmission and neuronal
activity

Stuart W.S. MacDonald", Lars Nyberg®® and Lars Backman'

Trends Neurosci, 29, 2006




Age-related changes in BOLD
variability: regional specificity

Scores from SD brain analyses

Regions show age-related decreases in standard
deviation also correlate with stable reaction time

Garrett et al, J Neurosci, 2010

Standard Deviation



Normal Aging & Brain Noise
EEG data

1. Tasks: Simple perceptual matching & Delayed match to

sample
2. Stimuli: Bandpass filtered white noise (subject-specific

thresholds).
3. Duration of visual stimuli: 1.4 to 2 sec (4 sec delay for DMS)

Participants:

"  Young (N=16): 20-35yrs (10 females; mean age = 22 yrs)
= Middle (N=16): 36-55 yrs (11 females; mean age = 45 yrs)
= QOld (N=16): 60-78yrs (11 females; mean age = 66 yrs)

McliIntosh, Vakorin, Wang, Diaconescu & Kovacevic in prep



Normal Aging & Brain Noise
MEG data

1. Task: Simple reaction time

2. Stimuli: Black-and-white line drawings selected from the
Snodgrass and Vanderwart (1980) database. All visual stimuli
were matched according to size (in pixels), brightness, and
contrast.

3. Duration of visual stimuli: 400ms

4. Left Hand Response

Participants:
"  Young (N=15): 20-30yrs (8 females; mean age = 23.46 years)
= QOld (N=16): 60-78yrs (6 females; mean age = 69.93 years)

McliIntosh, Vakorin, Wang, Diaconescu & Kovacevic in prep



EEG data — Multiscale entropy
Visual Match-to-sample task

s11 group mean MSE at channel 50 [bsr_ge| > 3
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MEG data Multiscale Entropy
Auditory detection

Lt Superior Temporsl Cortex
T Age-related
changes are
time scale
dependent
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Local vs Distributed Entropy
EEG Data

Distributed entropy decreases across hemispheres Distributed entropy increases within hemispheres

(b) EEG (S/D tasks)
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Local vs Distributed Entropy
MEG Data

Distributed entropy decreases across hemispheres Distributed entropy increases within hemispheres

(a) MEG (A/V tasks)
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Noise & Clinical Conditions

Schizophrenia: reduced signal-to-noise ratio and impaired phase-locking

during information processing

G. Winterer™, M. Ziller®, H. Dorn®, K. Frick®, C. Mulert®, Y. Wuebben®,
W M. Herrmann®, R. Coppola’

Clin Neurophysiol 2000
Fluctuations in Cortical Synchronization in Pediatric
Traumatic Brain Injury

VERA NENADOVIC,23 JAMES S. HUTCHISON,'*#* LUIS GARCIA DOMINGUEZ,?
HIROSHI OTSUBO, MARTIN P. GRAY,! ROHIT SHARMA,3
JASON BELKAS,? and JOSE LUIS PEREZ VELAZQUEZ233

J Neurotrauma, 2008
Dynamic Range Enhancement for Cochlear Implants

Robert 5. Hong, Jay T. Rubinstein, Dan Wehner, and David Horn

Otology & Neurology, 2003
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Group Differences in Multiscale Entropy

e Traumatic Brain Injury & attention

— TBI patients show lower entropy at coarser time scales
compared to controls

Right Cuneus/BA 18
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Raja, et al, Neuroimage, 2012



Brain-Behavior Analysis

 No difference between TBI and controls in mean and
coefficient of variation of reaction time

Mean Reaction Time (n.s) Coeffcient of Variation on Reaction Time
(n.s.)

0.4
0.35
0.3
0.25
0.2
015 B TBI
0.1
0.05
Single-  Multi-feature Redundant 0
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Brain-Behavior Analysis

Significant negative correlation between entropy
variability in RT
— more strongly expressed in TBI patients than controls

Multi-feature Condition, p <.05
¢ Controls

= TBI
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Coefficient of Variation on
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General Conclusions

* Functional network dynamics
— Brain operates through networks not regions

— The interplay of structural and functional architecture makes for a
“noisy” complex system
* Noise enables multistability — Dynamic repertiore

» Different temporal and spatial signatures in the dynamic repertoire
» Noise & Variability in the brain

— A certain amount of noise seems important for normal function

— Emergence of “noise” with maturation
» Scale dependency emphasized in normal aging
» May be useful in assessing clinical conditions

— Interplay of noise and function (direction unclear)

* The brain, through its unique network architecture and
multiscale noise, is in a constant state of exploring what is
possible
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