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Multiple approaches to Computational Psychiatry



Maia & Frank 2011, Nat Neurosci



Theories of striatal dopamine

• Performance (motor function, motivation: incentive salience)

• Reinforcement learning (prediction errors)

• Dynamic interaction between the two.

Dopamine regulates striatal activity ↔ learning

• Converging evidence in:

– rodents

– humans

– models



“Go” and “NoGo” pathways in the BG

• “Direct pathway”: Go neurons gate actions

• “Indirect pathway”: NoGo neurons prevent gating

• Dopamine activates Go (D1), inhibits NoGo (D2)

• Phasic DA signals drive learning via dynamic activation effects



D1 effects on BG learning: Positive PE



D1 effects on BG learning: Positive PE

Three factor learning: presynaptic, postsynaptic and DA



D2 effects on BG learning: Negative PE

Frank 2005



Neural circuit model of BG in learning / decision making
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Support for go/nogo learning mechanisms in rodents



Can PD be learned?
Catalepsy sensitization by DA depletion or haloperidol

A case of exaggerated NoGo learning??



Haloperidol...

• potently blocks dopaminergic D2 receptors in the NoGo pathway:

– ↑ NoGo activity (performance) Day et al 2008

– ↑ NoGo plasticity (learning) Centonze et al 04; Hakansson et al 06;

Shen et al 08

⇒Striatal D2 blockade induces synaptic potentiation of “NoGo” units:

Learned catalepsy (inaction)



Model Results: Sensitization & Context-Dependency

Haloperidol simulated by postsynaptic striatal D2 blockade

Wiecki et al 2009, Psychopharmacology



Mechanism



Mechanism

How does this mechanism affect learning / performance in active motor tasks?



Striatal-dependent motor learning task

(Accelerating Rotarod)

Data



Striatal-dependent motor learning task
(Accelerating Rotarod)

Data

Model

Beeler et al, submitted



Selective D1 / D2 blockade during established skill

D1 block D2 block



Selective D1 / D2 blockade during established skill

D1 block D2 block

Model



Human probabilistic reinforcement learning
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Human probabilistic reinforcement learning
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Testing the model:
Parkinson’s and medication effects

Choose Pos Avoid Neg
Test Condition
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Parkinson’s patients on/off meds 

Frank, Seeberger & O’Reilly (2004)

(See also: Cools et al, 06, Frank et al 07, Moustafa et al 08, Bódi et al 09, Palminteri et al, 09, Voon et al 10)



Converging evidence:
DA stimulation vs. D2 blockade on go/nogo learning

BG model: D2 blockade → ↑ NoGo activity, learning Palminteri et al, 2009



Individual differences in go learning:
striatal D1 receptor binding

preliminary data, with Sylvia Cox and Alain Dagher



Individual differences in go/nogo learning:
striatal D1/D2 receptor binding

preliminary data, with Sylvia Cox and Alain Dagher



Tyrosine depletion: reducing DA levels improves
avoidance/learning

preliminary data, with Alain Dagher



Genetic effects: Striatal dopaminergic variants

DARPP-32: required for corticostriatal D1-LTP and reward learning
(e.g. Stipanovich et al 08)

Doll et al, 11; Frank et al, 07, Klein et al 07; Frank & Hutchison 09; Frank & Fosella, 11..



DA drugs: Learning and motivational effects

• DA drug amplifies striatal RPE’s during learning, increasing reward-based choice

• But: DA meds can also have motivational effects unrelated to learning per se.
Meds modestly increase choose-A without RL (Smittenaar et al, 12; Shiner et al 12).

Jocham, Klein & Ullsperger 2011; see also Ott et al 2011



Formalizing BG/DA computations: Q learning, take one

Learning: Update “Q” values of actions in proportion to prediction errors δ:

Qi(t+1) = Qi(t) + αW[δ(t)]+ + αL[δ(t)]−



Formalizing BG/DA computations: Q learning, take one

Learning: Update “Q” values of actions in proportion to prediction errors δ:

Qi(t+1) = Qi(t) + αW[δ(t)]+ + αL[δ(t)]−

Choice: Standard “softmax” function for modeling striatal choice among Q values:

PA =
1

1+ e−β(QA−QB)
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Can this basic model account for DA effects on learning / choice?



Standard Q model

• α asymmetry leads to choose-A 6= avoid-B (cf gene effects Frank et al 07)



Standard Q model

• α asymmetry leads to choose-A 6= avoid-B (cf gene effects Frank et al 07)

• but no mechanism for motivational effects:

increasing β → better overall accuracy, no pos/neg difference



Neural model and monkey data:
separate populations coding for QGo and QNoGo

Samejima et al 2005



Q-GN model: separate QG from QN

Learning:
QGi(t+1) = QGi(t) + αG[δ(t)]

QNi(t+ 1) = QNi(t) + αN[−δ(t)]

Choice:

PA =
1

1+ e−[βG(QGA−QGB)−βN(QNA−QNB)]

Dopamine modulates:

• learning (α asymmetry)

• incentive: QG vs QN during choice (β asymmetry)

choice function formally equivalent to prospect theory



QGN model



QGN model

• no difference between choose-A / avoid-B for any param combination!

• better overall performance when learning and performing in the same dopaminergic
state (α and β asymmetry in the same direction)



QGN model

QG QN



QGN model

QG QN Q-wDiff
(βG = βN )



QGN model

QG QN Q-wDiff Q-wDiff Q-wDiff
(βG = βN ) (βG > βN ) (βG < βN )



Q-GN model with activity-modulated learning

Learning:
QGi(t+1) = QGi(t) + αGQGi(t)[δ(t)]

QNi(t+1) = QNi(t) + αNQNi(t)[−δ(t)]



Q-GN model with activity-modulated learning

Learning:
QGi(t+1) = QGi(t) + αGQGi(t)[δ(t)]

QNi(t+1) = QNi(t) + αNQNi(t)[−δ(t)]

Choice:

PA =
1

1+ e−[βG(QGA−QGB) − βN(QNA−QNB)]

with Anne Collins



QGN model with activity-modulated learning

QG QN Q-wDiff Q-wDiff Q-wDiff
(βG = βN ) (βG > βN ) (βG < βN )

with Anne Collins



QGN model: learning and motivational effects

with Anne Collins



QGN model: learning and motivational effects



QGN model: learning and motivational effects

⇒ Learning and motivational effects of striatal DA arise only if the two processes interact!

with Anne Collins



Valuation increases after choice...



Valuation increases after choice...

...this enhanced valuation correlates with BG activity

Sharot et al, 2009a



Why might this happen:
The (Structural) Credit Assignment Problem



A solution

This mechanism substantially improves learning in advanced tasks; O’Reilly & Frank 2006



A solution

This mechanism substantially improves learning in advanced tasks; O’Reilly & Frank 2006

Some evidence:

Independent and simultaneous RPE signals in BG for actions with independent outcomes (Gershman et al 09)



The Mechanism: Disinhibition

Joel & Weiner, ’00; O’Reilly & Frank ’06; Lobb et al, 2011



Quantifying Choice Bias in RL



Quantifying Choice Bias in RL



Choice bias results

• choice-bonus only for options that yielded positive outcomes

• consistent with actions disinhibiting DA bursts



In Q value terms...



Individual differences are informative! DARPP-32 gene

If bias arises from PE-bonus & Go learning, should be enhanced in DARPP-32 TT carriers...



Individual differences are informative! DARPP-32 gene

If bias arises from PE-bonus & Go learning, should be enhanced in DARPP-32 TT carriers...







Generative QGN: choice bias varies by learning asymmetry

αG > αN αG < αN



Generative QGN: choice bias varies by learning asymmetry

αG > αN αG < αN



“Adaptive” mechanism for credit assignment can lead to odd
behavior...



Working memory effects on RL



Working memory effects on RL

RL+WM model:

p(a) = (1− w(t)) ∗ pRL(a) + w(t) ∗ pWM(a)

wnS
(t+1, s) =

pWMC(rt|st, at)wnS
(t, s)

pWMC(rt|st, at)wnS
(t, s) + pRL(rt|st, at)(1− wnS

(t, s))
.



Working memory effects on RL

RL+WM model:

p(a) = (1− w(t)) ∗ pRL(a) + w(t) ∗ pWM(a)

wnS
(t+1, s) =

pWMC(rt|st, at)wnS
(t, s)

pWMC(rt|st, at)wnS
(t, s) + pRL(rt|st, at)(1− wnS

(t, s))
.

Collins & Frank 2012 EJN



Two features of WM contributions: delay and capacity limits

Collins & Frank 2012 EJN



Dissociable PFC vs BG genetic predictors of WM vs RL

GPR6: postmortem human (Roth et al 06) mouse (Lobo et al 07)



Closer look at COMT WM effects on learning



Hierarchical interactions among BG-FC circuits



Frank & Badre, 2011; Badre & Frank 2011



Hierarchical interactions among BG-FC circuits

Collins & Frank submitted; Frank & Badre, 2011















2 loop PFC-BG network maps onto C-TS abstraction (Collins & Frank,

pending)



Summary

• Dynamic interaction between performance and learning effects of

striatal dopamine: rodents, humans, models

• Learning from internally/externally generated action dissociates BG

gating from action. Boosted values assoc with rewarding actions

• Dissociable contributions of PFC and BG to RL / WM

• Negative symptoms in schizophrenia: degraded PFC value

representations for choice and exploration

• PFC-STN pathway regulates decision threshold

• Hierarchical interactions between multiple loops enable structured

model learning
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Negative symptoms in schizophrenia: actor critic vs Q learning

Gold et al, 2012 Archives of Gen Psych



QG and QN values: Decide and No-Decide
(αG > αN )

Qnet QG QN



QG and QN values: Decide and No-Decide
(αG < αN )

Qnet QG QN



Top-down activity can also influence learning:
PFC instructional influence on BG

Doll et al, 2009



QGN model predicts distorted learning: confirmation bias

standard Q QGN Q + conf bias



QGN model predicts distorted learning: confirmation bias

standard Q QGN Q + conf bias

model data



Genetic modulation of instruction effects

Genetic variants associated with better uninstructed learning
⇒ more value distortion by priors

⇒ Supports PFC-BG bias model: activity drives learning.
Doll et al, 2011, JNeurosci



diffusion model fits to PD choices/EEG

OFF DBS

hierarchical-Bayes param estimation tool for DDM: http://ski.cog.brown.edu/hddm_docs



diffusion model fits to PD choices/EEG

OFF DBS

⇒ threshold increases with theta in high conflict trials



DBS reverses mPFC influence over decision threshold

ON DBS

Cavanagh et al, 2011 Nature Neuroscience



STN-DBS reverses mPFC influence over decision threshold

Cavanagh et al, 2011 Nature Neuroscience


