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Abstract

How much about our interactions with — and experience of — our world can be deduced from basic principles? This talk
reviews recent attempts to understand the self-organised behaviour of embodied agents, like ourselves, as satisfying basic
imperatives for sustained exchanges with the environment. In brief, one simple driving force appears to explain many
aspects of perception and action - the minimisation of surprise or prediction error. In the context of perception, this
corresponds to Bayes-optimal predictive coding (that suppresses exteroceptive prediction errors) and — in the context of
action —reduces to classical motor reflexes (that suppress proprioceptive prediction errors). We will look at some of the
phenomena that emerge from this single principle; such as perceptual synthesis and action selection. | will focus on the
key role of precision in making predictions under uncertainty. Neurobiologically, precision may be encoded by the
postsynaptic gain of neuronal populations reporting prediction error and is a clear target of neuromodulatory pathologies
implicated in many psychiatric disorders. | hope to illustrate this using simulations of hallucinations and failures of
affordance, of the sort seen schizophrenia and Parkinson's disease.
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“Objects are always imagined as being present in the field of vision as
would have to be there in order to produce the same impression on
the nervous mechanism” - von Helmholtz

Hermann von Helmholtz Richard Gregory

Geoffrey Hinton

From the Helmholtz machine to the
Bayesian brain and self-organization

Richard Feynman

Hermann Haken



temperature

What is the difference between a
snowflake and a bird?

...a bird can act (to avoid surprises)



The basic ingredients

Hidden states in the world Sensations Internal states of the agent

Fluctuations A , |
% Posterior expectations

Externe;h§tates

a=argmin, F (5, &)

Action



The principle of least free energy (and minimising surprise)
F (8 u,m)=—Inp(§|m)+ Dy [a( | 1), p(w |9)]

=E,[-Inp(7,8)]-H[q( | )]  Maximum entropy principle

Ergodic theorem

v

.fth(t) > —j dtin p(8(t) |m) =H[p(§|m)]  Minimum entropy principle

Self organisation and the principle of least action



How can we minimize surprise (prediction error)?

Prediction error

Change
predictions

Change
sensations

Action y Perception

...action and perception minimise free energy



Action as inference — the “Bayesian thermostat” Posterior distribution
p(l// | S) Prior distribution

N p(w)
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Free energy minimisaton —* Generative model - Predictive coding with reflexes
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From models to perception

Asimple hierarchy G i el
enerative mode
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Model inversion (inference)
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David Mumford
Predictive coding with reflexes )
Action

— qculomotor
signals

proprioceptive input

retinal input Perceptlon

Prediction error (superficial pyramidal cells)

geniculate
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high level macrocolumn

Cortical layers

Precision (neuromodulation)

Prediction error (superficial pyramidal cells)
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Presynaptic terminals

Conditional predictions (deep pyramidal cells)
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‘ Excitatory (AMPA) receptors
o Modulatory (D1) receptors
@ inhibitory (GABAW) receptors
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Biological agents resist the second law of thermodynamics

They must minimize their average surprise (entropy)

They minimize surprise by suppressing prediction error (free-energy)

Prediction error can be reduced by changing predictions (perception)

Prediction error can be reduced by changing sensations (action)

Perception entails recurrent message passing in the brain to optimize predictions
Action makes predictions come true (and minimizes surprise)

Both action and perception depend the precision of prediction errors



Overview

The free-energy principle

Action and perception
Generative models
Predictive coding

Perception

Action

Birdsong and attractors
Deep models
Simulated lesions and false inference

Affordance and attractors
Deep models
Simulated lesions and false inference




Generating bird songs with attractors

HVC Syrinx Sonogram
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Predictive coding prediction and error
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Hierarchical attractors: sequences of sequences

Neuronal hierarchy

Syrinx sonogram
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no structural priors

no dynamical priors

Frequency (Hz) Frequency (Hz)

Frequency (Hz)

Neuromodulatory lesions and false inference
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Action as inference - the “Bayesian thermostat”

Prior distribution

40 60 80 1 00 120 W

temperature

Perception 4 =argminF (s, u,7) = argmin {I1,(s(a) — g(u))? +I1, (u ~n)?}
u u

Action  a=argminF (s, u,n) =argmin{I1(s(a) - g(w))* +I1, (u 1)’}



Action with point attractors
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- Heteroclinic cycle (central pattern generator)
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Affordance and

{ actwe mference joint positions /\ | affordance
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Dopamine and
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Motor cortex
Premotor cortex

Parietal cortex

Mesocortical DA projections

Nigrostriatal DA projections

Motoneurones
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Uncertainty and perseveration
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Uncertainty, perseveration and disorganisation

Perseveration (sleep) | disorganisation I

Motor cortex Motor cortex

Premotor cortex = (x Premotor cortex
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Free-energy minimization and the dark-room problem
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Searching to test hypotheses - life as an efficient experiment

H(S,¥)=H(S|m+H(¥|S)
= E[-In p(3(t) |m)]+ E[H (¥ | S=5(t))]

Free energy principle
A

minimise uncertainty

fit) = argmin{ Hq(7 | 2.7}



Time-scale
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Free-energy minimisation leading to...

Perception and Action: The optimisation of neuronal and
neuromuscular activity to suppress prediction errors (or free-
energy) based on generative models of sensory data.

Learning and attention: The optimisation of synaptic gain and
efficacy over seconds to hours, to encode the precisions of
prediction errors and causal structure in the sensorium. This
entails suppression of free-energy over time.

Neurodevelopment: Model optimisation through activity-
dependent pruning and maintenance of neuronal connections that
are specified epigenetically

Evolution: Optimisation of the average free-energy (free-fitness)
over time and individuals of a given class (e.g., conspecifics) by
selective pressure on the epigenetic specification of their
generative models.



