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Reward and decision making

The classic story: dopamine and the law of
effect

Why this is incomplete: multiple decision
making systems, model-based and model-free

Multiple decision systems in humans
Implications for psychiatry



the classic story



Broad findings

Reward or reward anticipation activates ventromedial prefrontal cortex &
orbitofrontal cortex, striatum (sometimes midbrain)

money
gain vs loss
(Kuhnen & Knutson
2005)

money

vvaliia nradirtand

N food odors
valued vs devalued
(Gottfreid et al 2003)

juice

A unpredictable vs
| predictable

8 (Berns et al 2001)

Coke or Pepsi
degree favored
(McClure et al. 2004)

- commonality of responding across reinforcers suggests generalized appetitive function



Dopamine
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dopamine

SALIVA BEGINS
TO FLOW.

» predictive learning is error driven
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dopamine

prediction errors may train
predictions in striatum...
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learned decision making in humans
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<- avoid - choose ->
(@)

reward

-5 1
-1 -6
lag (trials)

behavioral analysis: characterize the function relating outcomes to
future choices (trial by trial learning model)

multinomial logistic regression: outcomes = choices
(Seymour et al. 2012)



Error-driven learning rules (like temporal-difference learning) predict weights
should have exponential form (Lau & Glimcher 2005)
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Prediction error signals are visible at DA targets using fMRI
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Striatal BOLD, DA, and PE
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the law of effect

“Of several
responses made to
the same situation,
those which are
accompanied or
closely followed by
satisfaction to the
animal will, other
things being equal,
be more firmly
connected with the
situation, so that,
when it recurs, they
will be more likely
to recur.”

reinforcement Thorndike (1911)

stimulus

response
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What’s wrong with all this



Cognitive maps

“The stimuli are not connected by just
simple one-to-one switches to the outgoing
responses. Rather, the incoming impulses
are usually worked over and elaborated in
the central control room into a tentative,
cognitive-like map of the environment. And
it is this tentative map, indicating routes
and paths and environmental relationships,
which finally determines what responses, if
any, the animal will finally release.”

Tolman (1948)






Che New York Times

Tainted Fish

Tuna sushi purchased from 20 restaurants and stores in Manhattan |
The New York Times in October was tested for mercury. Analysts
examined at least two pieces of sushi from each place and calculat
the level of methylmercury, a form linked to health problems, in part:
per million. They then determined how many pieces it would take to
reach what the Environmental Protection Agency calls a weekly
reference dose (RfD), what it considers an acceptable level to be
regularly consumed. (Pieces varied in size.) Figures below are for tt
piece of sushi with the highest level of mercury at each place.
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Bellman equation
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important & confusing point:
food not delivered during test. why?

behavior compared to control group who skipped stage 2 (still want food),
but also don't get it
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Moderate training:

/V

Outcome insensitive following overtraining
“habitual” like TD

Animals will work for food they don’t want, sometimes
—> familiar counterpart: actions become automatic with repetition



Lesions

e With lesion of dorsolateral
striatum (also its DA input) rats
acquire normally but never
form habits: perpetually
devaluation sensitive

 Prefrontal areas, also
dorsomedial striatum produce
opposite pattern: even
undertrained rats are habitual
(devaluation insensitive)

— Behavior arises from
dissociable neural systems
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outcome sensitivity

model-based: model-free:
can immediately adapt to value shifts cannot immediately adapt
like goal-directed like habits
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computed computed stored\ /:tored
=Soks

(Daw et al 2005)
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Why multiple systems
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theory

why have multiple systems?
— computational efficiency vs statistical efficiency

when to favor each?
— itself a decision-theoretic tradeoff (cf Keramati et al. 2011)

— e.g. little value to deliberating when highly practiced on a
stable task

— this model explains lots of data on what circumstances
favor each system

how does the model-based system work?

(Daw et al. 2005)
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Human analogues



Unappealing approach
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learned decision making in humans
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sequential decision task
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(all slowly changing)
(Daw et al Neuron 2011)



idea

How does bottom-stage
feedback affect top-stage
choices?

Example: rare transition at
top level, followed by win

e Which top-stage action is
now favored?




stay probability
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direct reinforcement

ignores transition structure
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Does this distinction track
traditional measures of
automaticity?



dual task

single task dual task
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dual x reward: p < 5e-7
dual x reward x rare: p< .05

(Otto et al. in press)



RED



0.

stay probability

75

0.5,

good at stroop

Hcommon
Mrare

bad at stroop

rewarded unrewarded

rewarded unrewarded

(Skatova et al in prep)
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Can we modulate the tradeoff
between these two sorts of
learning?



reward volatility
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model-based regions in humans

devaluation serial reversal

Hr<.001

Regression coefficient
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) .
'.& (8

Valentin et al 2007 Hampton et al. 2006

Model-based Model-free



overtraining regions in humans (model
free?)

devaluation sequential RL
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Psychiatric implications



Psychiatric implications

1. Compulsion: widely assumed that model free
system is automatic, and may underlie
compulsion as in drug abuse, dieting etc.
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Psychiatric implications

1. Compulsion: widely assumed that model free
system is automatic, and may underlie
compulsion as in drug abuse, dieting etc.

2. Theory of mind: In multiplayer interactions,
model-based RL amounts to learning a model
of the opponents’ beliefs. This may have
relevance to autism etc.



p-beauty contest

* Write down your initials and an integer
between 0 and 100, inclusive

* we will average all entries. The contestant

who picks closest to 2/3 of the average wins
the prize (a drink)

* Prize split in case of tie



 what did you choose?

e why?

* what do you think your colleagues chose?



Why is this called a p-beauty contest?

.....

* Keynes (1936): |

It is not a case of choosing those
[faces] which, to the best of one’s
judgment, are really the prettiest, nor

Bt Doty (Hisinten
even those which average opinion s uma ‘
genuinely thinks the prettiest. We i T Which
have reached the third degree where Wateite | e ok
we devote our intelligences to == | Miss Rheineold
anticipating what average opinion 19579

ERERE
Ve Lacgmett o i booww 100 Eondt |

expects the average opinion to be.

And there are some, | believe, who
practise the fourth, fifth and higher
degrees.

* Economists are fond of old quotes.



Results
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learning in p-beauty contest

how does learning look with
repeated play in p-beauty contest?

do subjects approach equilibrium?

how does this learning relate to
the mechanisms and principles we
talked about yesterday?
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equilibration
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equilibration

* what does law of effect (simple TD, etc) predict
about p-BC learning?

* what’s the problem here?

Frequency

Singaporean undergrads — Ho et al. 1998



Ive maps

cognit

* what is the counterpart of a cognitive map in this

sort of task?

Aouanbaig



 EWA theory (Camerer & Ho) treats learning in
games as weighted sum of model-based
(belief learning, iterative reasoning) and
model-free

e Different games (& different individuals)
produce different levels of model-basedness



Psychiatric implications

1. Compulsion: it is widely assumed that model
free system is automatic, and may underlie
compulsion as in drug abuse, dieting etc.

2. Theory of mind: In multiplayer interactions,
model-based RL amounts to learning a model of

the opponents’ beliefs. This may have relevance
to autism etc.

3. Reward processing & motivation: while many
have noted that, e.g. schizophrenia, involves
impaired associative learning and reward
processing, it is not known which sort



Open questions

Are the systems really separate or interacting?
How to understand this computationally?

Are there more than two systems (e.g. a
separate episodic or spatial controller)

Why do people use more or less belief
earning in different games?

How do these ideas map onto other dual-
orocess models throughout psychology and
neuroscience
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