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Structural, functional & effective connectivity

structural connectivity functional connectivity effective connectivity
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Sporns 2007, Scholarpedia
anatomical/structural connectivity

= presence of axonal connections

functional connectivity
=  statistical dependencies between regional time series

effective connectivity
causal (directed) influences between neurons or neuronal populations



Methods for effective connectivity analysis

* Regression models
(e.g. psycho-physiological interactions, PPIs)
Friston et al. 1997

« Structural Equation Models (SEM)
Mclintosh et al. 1991, 1994 Buchel & Friston 1997; Bullmore et al. 2000

 Volterra kernels
Friston & Biuchel 2000

« Time series models (e.g. MAR, Granger causality)
Harrison et al. 2003, Goebel et al. 2003

* Dynamic Causal Models (DCM)

bilinear: Friston et al. 2003; nonlinear: Stephan et al. 2008; ERPs David et al 2006; LFPs,
Moran et al 2009



Dynamic causal modelling (DCM)
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DCMs are generative models of brain responses, which
provide posterior estimates of neurobiologically interpretable

parameters such as the effective strength of connections
among neuronal populations and their context dependent

modulation




A Generic Framework

Hemodynamic Electromagnetic

forward model: forward model:

neural activity—=BOLD neural activity—=EEG
MEG

LFP

\ Neural state equation: /
dx
= F(x,u,0)
fMRI dt o EEG/MEG

1 and 2 state 13 state model
models




Its Key Components

Dynamic (differential) equations describe hidden neuronal dynamics at a level of detail
constrained by the measurement

In a control theory sense, input perturbations disturb equilibrium neuronal dynamics and
propagate through connected networks to other brain regions

Realistic neuronal to measurement model accounts for regional HRF differences and captures key
electrophysiological features eg. Power spectra

Priors on biological parameters to constrain them within physiologically plausible ranges
Model evidence objective function maximised during parameter estimation
Mean and covariance estimates for a parameter set



Overview

Dynamic causal models for fMRI

- Work through example: Attention to Motion

- Neural level & Hemodynamic level

- Parameter estimation, priors & inference

« Dynamic causal models for Steady State Responses (rat LFPs

- Work through example: Isoflurane effects on connectivity

- Neural mass model



Attention to Motion

Paradigm

4 conditions
- fixation only
- observe static dots
- observe moving dots
- attend to moving dots

GLM Results
Attention — No attention

Blchel & Friston 1997, Cereb. Cortex
Blchel et al. 1998, Brain




Effects of attention on
motion responses in V5

Photic Model 1/Hypothesis 1

Bottom-up Model

Motion

. Attention
Attention Photic

Model 2/ Hypothesis 2 e

Top- M I .
op-down Mode Motion
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Neural Dynamics and Static Observer
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Neural Dynamics and Static Observer

x=(A+uB)x+Cu

M J\/\y/z_/\/ v=g(x,H)+¢

H H2) £ ~N(0,0)

W
x, ®

X2
C(1)
—ull |

A(1,2) + B(1,2)

u2



Vanilla DCM:

Neural Dynamics : a bilinear approximation

driving

Simply a two-dimensional input

taylor expansion (around x,=0, u,=0):

dx of of 9° f
—=f(x,u)= f(x,,0)+—x+—u+ ux + ...
dt J(@xu) = 1(x,9) ox ou oxou

modulation

R

0x 0

Jf

C=— Bilinear state equation:
ou x=0 dx i
, — = A+ ul.B(") x+Cu

3 0 f dt s

B

- oxou



Connectivity Parameters: Rate
Constants

Integration of a first-order linear differential equation gives an
exponential function:

@—ax — x(¢) = x, exp(at)

"ol el o

The coupling parameter a
thus describes the speed
of the exponential change

If A>B is 0.10 s this means that, per unit time, the increase in activity in B
corresponds to 10% of the activity in A

If A>B is -0.10 s this means that, per unit time, the decrease in activity in B
corresponds to 10% of the activity in A




Context X =Ax+ uzB(z)x +Cu,
Dependent

Penny et al. 2004, Neurolmage




Neuronal activity o BOLD

X

e Cognitive system is
modelled at its underlying
neuronal level (not directly
accessible for fMRI).

* The modelled neuronadl

dynamics (X) are
transformed into area-
specific BOLD signals (Y) by
a hemodynamic model
().



Hemodynamic Model

e 6 parameters:

‘6"1 ={K,7,7,0, p,e}l

}

important for model fitting, but
usually of no interest for
statistical inference

« Computed separately for
each area — region-specific
HRFs

Friston et al. 2000, Neurolmage
Stephan et al. 2007, Neurolmage

LTI
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Activity
x(t)H

neural state equations
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changes in volume changes in dHb
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BOLD signal
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Estimated BOLD
response



Hemodynamic and Neuradl
Parameter Correlations
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Work through example: Attention to Motion

Neural level & Hemodynamic level

Parameter estimation, priors & inference

Dynamic causal models for Steady State Responses (rat LFPs

Work through example: Isoflurane effects on connectivity

Neural mass model



Inference on Models

Model evidence: p(y | m1,)

Approximation: Free Energy F =1np(y|m,)-KL[q(0),p(0]|G,A)]

E) ccounts for both accuracy and complexity of the model

‘ allows for inference about structure (generalisability) of the model

Fixed Effects Model selection via

log Group Bayes factor:

BF,, = Zlnp(y\ml) —Zlnp(y\mz)

Random Effects Model selection

via Model probability:
pr|y. o)

<rk>q =, [(a +...+ay)




Inference on Models

Model evidence: p(y | m1,)
Approximation: Free Energy F =1np(y|m,)-KL[q(0),p(0]|G,A)]

balance between fit and complexity = accuracy - complexity

=(log p(y16,m)) -KL|q(6),p(61m)]

_ Deviation of posterior mean from prior mean
Independent Priors

1
2

KL

Laplace —
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Dependent Posteriors



Inference on Single Subject Parameters

e Gaussian assumptions about the posterior distributions of the
parameters

e posterior probability that a certain parameter (or contrast of
parameters) is above a chosen threshold .

e By default, y is chosen as zero — the prior ("does the effect
existe").




Inference on Multi Subject Parameters: FFX

Bayesian Parameter Averaging

Likelihood distributions from Under Gaussian assumptions this is
different subjects are independent easy to compute:
OU individual
grovp. posterior
posterior :
: covariances
covdaranc

i=1

N
1
Moy,....vy —( Con Mo, )Ceyl,...,yzv
3 =Ty 4

group individual posterior
posterior covariances and means

mean




Inference on Multi Subject Parameters: RFX

Summary Staftistic Approach

* |In analogy to “random effects” analyses in SPM, 2" [evel analyses can be
applied to DCM parameters:

Separate fitting of identical
models for each subject

|

Selection of parameters of interest

one-sample t-test:
parameter >0 ¢

paired t-test:
parameter 1 >
parameter 2 ¢

rmANOVA:
e.g. in case of multiple
sessions per subject




Haemodynamics

State space
Model

Model
comparison




Effects of attention on Ingredients for a DCM
motion [€SPONSES N Vo Specific hypothesis/question

Model: based on hypothesis
Photic Timeseries:  from the SPM
\ Inputs: from design matrix
Model 1/Hypothesis 1
Bottom-up Model
Motion .
Attention

Photic

Attention \

Model 2/ Hypothesis 2 T
Top-d Model e
op-down Tode Motion
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Dynamic Causal Models and Physiological Inference: A
Validation Study Using Isoflurane Anaesthesia in
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Abstract

Generative models of neuroimaging and electrophysiological data present new opportunities for accessing hidden or latent
brain states. Dynamic causal modeling (DCM) uses Bayesian model inversion and selection to infer the synaptic mechanisms
underlying empirically observed brain responses. DCM for electrophysiological data, in particular, aims to estimate the
relative strength of synaptic transmission at different cell types and via specific neurotransmitters. Here, we report a DCM
validation study concerning inference on excitatory and inhibitory synaptic transmission, using different doses of a volatile
anaesthetic agent (isoflurane) to parametrically modify excitatory and inhibitory synaptic processing while recording local
field potentials (LFPs) from primary auditory cortex (A1) and the posterior auditory field (PAF) in the auditory belt region in
rodents. We test whether DCM can infer, from the LFP measurements, the expected drug-induced changes in synaptic
transmission mediated via fast ionotropic receptors; i.e., excitatory (glutamatergic) AMPA and inhibitory GABA, receptors.
Cross- and auto-spectra from the two regions were used to optimise three DCMs based on biologically plausible neural
mass models and specific network architectures. Consistent with known extrinsic connectivity patterns in sensory
hierarchies, we found that a model comprising forward connections from A1 to PAF and backward connections from PAF to
A1 outperformed a model with forward connections from PAF to A1 and backward connections from A1 to PAF and a
model with reciprocal lateral connections. The parameter estimates from the most plausible model indicated that the
amplitude of fast glutamatergic excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs)
behaved as predicted by previous neurophysiological studies. Specifically, with increasing levels of anaesthesia,
glutamatergic EPSPs decreased linearly, whereas fast GABAergic IPSPs displayed a nonlinear (saturating) increase. The
consistency of our model-based in vivo results with experimental in vitro results lends further validity to the capacity of DCM
to infer on synaptic processes using macroscopic neurophysiological data.
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Figure 1. Electrode Placement. Electrode placement (silverball
electrodes) in primary auditory cortex (A1) and posterior auditory field
(PAF) in auditory cortex (A). The anatomical labelling of auditory fields
was taken from [38] and matched to a rat brain from our animals. The
indicated scaling is in mm.

doi:10.1371/journal.pone.0022790.g001

Trials:

1: 1.4 Mg Isoflourane
2: 1.8 Mg Isoflourane
3: 2.4 Mg Isoflourane
4: 2.8 Mg Isoflourane
5: awake

(1 per condition)



Power A1

Steady-State Spectral Responses
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Hypothesised mechanisms of action

Connectivity effected by Isoflurane:
Extrinsic or Infrinsice (Bayesian Model Comparison)
How so¢ (Posterior Parameter Estimates)

Extrinsic Forward
Connection

Intrinsic
Connection
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Time to Frequency

Domain

Linearise around a stable fixed point or LC

Differential Equations State-space model Transfer Function
x= f(x)+ Bu x= Ax+ Bu g H(s)
y=I(x)+ Du y=Cx+Du

Fig. 1. Conversion scheme to obtain spectral outputs from the systems transfer function.
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