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Structural, functional & effective connectivity 

¤  anatomical/structural connectivity 
= presence of axonal connections 

¤  functional connectivity  
=  statistical dependencies between regional time series 

¤  effective connectivity  
=  causal (directed) influences between neurons or neuronal populations 

Sporns 2007, Scholarpedia 



Methods for effective connectivity analysis 

•  Regression models  
(e.g. psycho-physiological interactions, PPIs) 
Friston et al. 1997 

•  Structural Equation Models (SEM)  
McIntosh et al. 1991, 1994; Büchel & Friston 1997; Bullmore et al. 2000 

•  Volterra kernels  
Friston & Büchel 2000 

•  Time series models (e.g. MAR, Granger causality) 
Harrison et al. 2003, Goebel et al. 2003 

•  Dynamic Causal Models (DCM) 
bilinear: Friston et al. 2003;  nonlinear: Stephan et al. 2008; ERPs David et al 2006; LFPs, 
Moran et al 2009 



Dynamic causal modelling (DCM) 

DCMs are generative models of brain responses, which 
provide posterior estimates of neurobiologically interpretable 
parameters such as the effective strength of connections 
among neuronal populations and their context dependent 
modulation 



A Generic Framework 
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Neural state equation: 

Electromagnetic 
forward model: 

neural activity→EEG 
MEG 
LFP 

1 and 2 state 
models 

13 state model 

fMRI EEG/MEG 

Hemodynamic 
forward model: 
neural activity→BOLD 



Its Key Components 

Dynamic: 
Dynamic (differential) equations describe hidden neuronal dynamics at a level of detail  
constrained by the measurement 
 
Causal: 
In a control theory sense, input perturbations disturb equilibrium neuronal dynamics and 
propagate through connected networks to other brain regions 
 
Biophysical Observer: 
Realistic neuronal to measurement model accounts for regional HRF differences and captures key 
electrophysiological features eg. Power spectra 
 
Bayesian Inversion: 
Priors on biological parameters to constrain them within physiologically plausible ranges 
Model evidence objective function maximised during parameter estimation 
Mean and covariance estimates for a parameter set 



Overview 

•  Dynamic causal models for fMRI  

-  Work through example: Attention to Motion 

-   Neural level & Hemodynamic level 

-  Parameter estimation, priors & inference 

•  Dynamic causal models for Steady State Responses (rat LFPs 

-  Work through example: Isoflurane effects on connectivity 

-  Neural mass model 

 



Attention to Motion 

Paradigm 
 

4 conditions 
- fixation only    baseline 
-  observe static dots   + photic 
- observe moving dots   + motion 
-  attend to moving dots 
 

GLM Results 

Büchel & Friston 1997, Cereb. Cortex 
Büchel et al. 1998, Brain 

V5+ 

SPC 

Attention ‒ No attention 

The GLM analysis showed that activity in area V5 was not only 
enhanced by moving stimuli, but also by attention to motion. 
 
In the following we will model this effect in V5 using DCM, testing 
competing hypotheses regarding context-dependent modulation or 
“enabling” of V5 afferents. 
 



Model 1/Hypothesis 1 
Bottom-up Model 

Model 2/ Hypothesis 2 
Top-down Model 

Effects of attention on 
motion responses in V5 
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Neural Dynamics and Static Observer 
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Vanilla DCM: 
Neural Dynamics : a bilinear approximation 
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dx ax
dt

= 0( ) exp( )x t x at=
The coupling parameter a 
thus describes the speed 
of the exponential change 

Integration of a first-order linear differential equation gives an  
exponential function: 

If AàB is 0.10 s-1 this means that, per unit time, the increase in activity in B 
corresponds to 10% of the activity in A 
 
If AàB is -0.10 s-1 this means that, per unit time, the decrease in activity in B 
corresponds to 10% of the activity in A 
 

X1 X2 X3 

Connectivity Parameters: Rate 
Constants 



Context 
Dependent 
Decay 
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Neuronal activity to BOLD 

•  Cognitive system is 
modelled at its underlying 
neuronal level (not directly 
accessible for fMRI). 

•  The modelled neuronal 

dynamics (x) are 
transformed into area-

specific BOLD signals (y) by 
a hemodynamic model 
(λ). 

λ 

x 

y 
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important for model fitting, but 
usually of no interest for 
statistical inference 

•  6  parameters: 

•  Computed separately for 
each area → region-specific 
HRFs 
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Model evidence: 

Approximation:  Free Energy 

∑∑ −=
kk

mypmypBF )(ln)(ln 212,1

Fixed Effects Model selection via  
log Group Bayes factor: 

accounts for both accuracy and complexity of the model 

allows for inference about structure (generalisability) of the model 
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Inference on Models  
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•  Gaussian assumptions about the posterior distributions of the 
parameters 

•  posterior probability that a certain parameter (or contrast of 
parameters) is above a chosen threshold γ: 

•  By default, γ is chosen as zero – the prior ("does the effect 
exist?"). 

Inference on Single Subject Parameters  



Likelihood distributions from 
different subjects are independent 
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Under Gaussian assumptions this is 
easy to compute: 

group 
posterior  
covariance 

individual 
posterior  
covariances 

group 
posterior  
mean 

individual posterior  
covariances and means 

Inference on Multi Subject Parameters: FFX 
Bayesian Parameter Averaging  



•  In analogy to “random effects” analyses in SPM, 2nd level analyses can be 
applied to DCM parameters: 

Separate fitting of identical 
models for each subject 

Selection of parameters of interest 

one-sample t-test:  
parameter > 0 ? 

paired t-test:  
parameter 1 >  
parameter 2 ? 

rmANOVA:  
e.g. in case of multiple 

sessions per subject 

Inference on Multi Subject Parameters: RFX 
Summary Statistic Approach 



Roadmap 



Model 1/Hypothesis 1 
Bottom-up Model 

Model 2/ Hypothesis 2 
Top-down Model 

Effects of attention on 
motion responses in V5 
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Dynamic Causal Models and Physiological Inference: A
Validation Study Using Isoflurane Anaesthesia in
Rodents
Rosalyn J. Moran1*, Fabienne Jung3, Tetsuya Kumagai3, Heike Endepols3, Rudolf Graf3, Raymond J.

Dolan1, Karl J. Friston1, Klaas E. Stephan1,2, Marc Tittgemeyer3

1Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom, 2 Laboratory for Social and Neural Systems

Research, Department of Economics, University of Zurich, Zurich, Switzerland, 3Max Planck Institute for Neurological Research, Cologne, Germany

Abstract

Generative models of neuroimaging and electrophysiological data present new opportunities for accessing hidden or latent
brain states. Dynamic causal modeling (DCM) uses Bayesian model inversion and selection to infer the synaptic mechanisms
underlying empirically observed brain responses. DCM for electrophysiological data, in particular, aims to estimate the
relative strength of synaptic transmission at different cell types and via specific neurotransmitters. Here, we report a DCM
validation study concerning inference on excitatory and inhibitory synaptic transmission, using different doses of a volatile
anaesthetic agent (isoflurane) to parametrically modify excitatory and inhibitory synaptic processing while recording local
field potentials (LFPs) from primary auditory cortex (A1) and the posterior auditory field (PAF) in the auditory belt region in
rodents. We test whether DCM can infer, from the LFP measurements, the expected drug-induced changes in synaptic
transmission mediated via fast ionotropic receptors; i.e., excitatory (glutamatergic) AMPA and inhibitory GABAA receptors.
Cross- and auto-spectra from the two regions were used to optimise three DCMs based on biologically plausible neural
mass models and specific network architectures. Consistent with known extrinsic connectivity patterns in sensory
hierarchies, we found that a model comprising forward connections from A1 to PAF and backward connections from PAF to
A1 outperformed a model with forward connections from PAF to A1 and backward connections from A1 to PAF and a
model with reciprocal lateral connections. The parameter estimates from the most plausible model indicated that the
amplitude of fast glutamatergic excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs)
behaved as predicted by previous neurophysiological studies. Specifically, with increasing levels of anaesthesia,
glutamatergic EPSPs decreased linearly, whereas fast GABAergic IPSPs displayed a nonlinear (saturating) increase. The
consistency of our model-based in vivo results with experimental in vitro results lends further validity to the capacity of DCM
to infer on synaptic processes using macroscopic neurophysiological data.
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Introduction

Neural mass models have been used to simulate the electro-
physiological response of cortical regions and have recently served
as generative models for empirical M/EEG and LFP data
[1,2,3,4,5,6,7,8,9]. These models furnish mathematical descrip-
tions of detailed physiological processes including thalamic burst
firing [1], spike frequency adaptation [10], neuronal noise [11],
nonlinear channel conductances [12] and neuromodulation [13].
Of particular interest to empirical neuroscience is the inversion or
fitting of these generative models to real experimental data, where
mechanistic hypotheses regarding the genesis of data features can
be tested. Dynamic causal modelling (DCM) provides a general
framework in which neuronal ensemble models are inverted or
‘fitted’ to data. A particular ensemble model, known as an alpha-
kernel model [14] is often used within DCMs of M/EEG and LFP
data. The form of the dynamics is constrained by parameters that

encode the strength of transmission at different types of synapses.
Clearly, it is important to provide construct validity for these
model parameters and ensure that they have a physiological
interpretability. In this paper, we address this issue using LFP
signals, acquired by invasive recordings in rat auditory cortex,
under different levels of anaesthesia. This work is one from a series
of ongoing validation studies of the models employed in DCM for
electrophysiological data [15] using invasive recordings. Here, we
focus on the ability of DCM to infer on specific aspects of synaptic
transmission, i.e., whether it obtains plausible estimates of
experimentally induced changes in transmission at excitatory
glutamatergic synapses vs. inhibitory GABAergic synapses.
Pharmacological interventions can manipulate aspects of

synaptic processing and can thus be used to validate model
predictions: Here, we use isoflurane, a volatile anaesthetic agent
that is used commonly in animal laboratory studies [16]. While,
compared to other pharmacological agents, it induces a diverse

PLoS ONE | www.plosone.org 1 August 2011 | Volume 6 | Issue 8 | e22790



 Anaesthesia Depth 
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Trials: 
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 Steady-State Spectral Responses 



Connectivity effected by Isoflurane:  
Extrinsic or Intrinsic? (Bayesian Model Comparison) 
How so?  (Posterior Parameter Estimates) 
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Neural Mass Model 
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