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Outline

‣ An example task
‣ Why build models? What is a model
‣ Fitting models
‣ Validating & comparing models
‣ Model comparison issues in psychiatry
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Think of it as four separate two-armed bandit tasks
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Analysing behaviour

‣ Standard approach: 
• Decide which feature of the data you care about
• Run descriptive statistical tests, e.g. ANOVA

‣ Many strengths
‣ Weakness

• Piecemeal, not holistic / global
• Descriptive, not generative
• No internal variables
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Models

‣ Holistic
• Aim to model the process by which the data came about 

in its “entirety”

‣ Generative
• They can be run on the task to generate data as if a 

subject had done the task

‣ Inference process
• Capture the inference process subjects have to make to 

perform the task. 
• Do this in sufficient detail to replicate the data.

‣ Parameters
• replace test statistics
• their meaning is explicit in the model
• their contribution to the data is assessed in a holistic 

manner
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‣ Q values

‣ Key points: 
• Q is the key part of the hypothesis
• formally states the learning process in quantitative detail
• formalizes internal quantities that are used in the task

A simple Rescorla-Wagner model

Qt(at, st) = Qt�1(at, st) + ✏(rt �Qt�1(at, st))

at action on trial t; can be either ’go’ or ’logo’

st stimulus presented on trial t
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‣ Q values

‣ Action probabilities: “softmax” of Q value

‣ Features:

‣ links learning process and observations 
• choices, RTs, or any other data
• link function in GLMs
• man other forms

Actions

Qt(at, st) = Qt�1(at, st) + ✏(rt �Qt�1(at, st))

p(at|st, ht,�) = p(at|Q(at, st),�)

=
e�Q(at,st)

P
a0 e�Q(a0,st)

p(at|st) / Q(at, st)

0  p(a)  1
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‣ Maximum likelihood (ML) parameters

‣ where the likelihood of all choices is: 

Fitting models I

�̂ = argmax
�

L(�)

L(✓) = log p({at}Tt=1|{st}Tt=1, {rt}Tt=1, ✓|{z}
�,✏

)

= log p({at}Tt=1|{Q(st, at; ✏)}Tt=1,�)

= log

TY

t=1

p(at|Q(st, at; ✏),�)

=

TX

t=1

log p(at|Q(st, at; ✏),�)
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Fitting models II

‣ No closed form
‣ Use your favourite method

• gradients
• fminunc / fmincon...

‣ Gradients for RW model

dL(✓)
d✓

=

d

d✓

X

t

log p(at|Qt(at, st; ✏),�)

=

X

t

d

d✓
�Qt(at, st; ✏)�

X

a0

p(a0|Qt(a
0, st; ✏),�)

d

d✓
�Qt(a

0, st; ✏)

dQt(at, st; ✏)

d✏
= (1� ✏)

dQt�1(at, st; ✏)

d✏
+ (rt �Qt�1(at, st; ✏))
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‣ Transform your variables

‣ Avoid over/underflow

Little tricks

d logL(��)
d��

� = e�
�

⇥ �⇥ = log(�)

⇥ =
1

1 + e�⇥�

⇥ ⇥⇥ = log

�
⇥

1� ⇥

⇥

y(a) = �Q(a)

ym = max

a
y(a)

p =

ey(a)P
b e

y(b)
=

ey(a)�ym

P
b e

y(b)�ym
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ML characteristics
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‣ ML is asymptotically consistent, but variance high
• 10-armed bandit, infer beta and epsilon

• Hessian           can be used to derive confidence intervals 
and identify poorly constrained estimates
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‣ ML is asymptotically consistent, but variance high
• 10-armed bandit, infer beta and epsilon

• Hessian           can be used to derive confidence intervals 
and identify poorly constrained estimates

‣ ML can overfit... more later
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Figure 1: Likelihood surface for simulated reinforcement learning data, as a function of two free parame-
ters. Lighter colors denote higher data likelihood. The maximum likelihood estimate is shown as an “o”
surrounded by an ellipse of one standard error (a region of about 90% confidence); the true parameters
from which the data were generated are denoted by an “x”.

and Dayan, 2002). In fact, the Q-learning rule of Equation 2 can be seen as a simplified case of the Kalman
filter: the Bayesian model uses the same learning rule but has additional machinery that determines the
learning rate parameter a on a trial-by-trial basis (Kakade and Dayan, 2002; Behrens et al., 2007; Daw et al.,
2008).

Data likelihood: Given the model described above, the probability of a whole dataset D (i.e., a whole
sequence of choices c = c1...T given the rewards r = r1...T) is just product of their probabilities from Equation
3,

’
t

P(ct = L | Qt(L), Qt(R)) (4)

Note that the terms Qt in the softmax are determined (via equation 2) by the rewards r1...t�1 and choices
c1...t�1 on trials prior to t.

Together, Equations 2 and 3 constitute a full likelihood function P(D | M, qM), and we can estimate the
free parameters (qM = ha, bi) by maximum likelihood. Figure 1 illustrates the process. 1,000 choice trials
were simulated according to the model (with parameters a = .25 and b = 1, red x). The likelihood of the
observed data was then computed for a range of parameters, and plotted (with brighter colors for higher
likelihood) on a 2-D grid. In this case, the maximum likelihood point (â = .34 and b̂ = .93, blue circle) was
near the true parameters.

Confidence intervals: Of course, in order actually to test a hypothesis about the parameters’ values,
we need to be able to make statistical claims about the quality of the estimate q̂M. Intuitively, the degree
to which our estimate can be trusted depends on how much better it accounts for the data than other
nearby parameter estimates, that is on how sharply peaked is the “hill” of data likelihoods in the space
of parameters. Such peakiness is characterized by the second derivative (the Hessian) of the likelihood
function with respect to the parameters. The Hessian is a square matrix (here, 2x2) with a row and column
for each parameter. Evaluated at the peak point q̂M, the elements of the Hessian are larger the more rapidly
the likelihood function is dropping off away from it in different directions, which corresponds to a more
reliable estimate of the parameters. Conversely, the matrix inverse of the Hessian (like the reciprocal of a

4
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REWARD/PUNISHMENT REVERSAL LEARNING IN OLDER SUICIDE ATTEMPTERS

704       ajp.psychiatryonline.org Am J Psychiatry 167:6, June 2010

Time and Decision Making in Suicidal Behavior

Our results extend earlier findings of impaired decision 
making in younger suicide attempters with affective dis-
orders (11, 34) to a group of depressed elders with a his-
tory of suicide attempt. Suicide attempters in our study 
showed unstable decision making, which has been de-
scribed in midlife depression (15, 16) but was evident to 
a more extreme degree in our study participants. Further-
more, decreased reliance on past history was dissociated 
from abnormal sensitivity to rewards or punishments. 
Thus, in counterpoint to the prevailing view that suicidal 
individuals’ representations of reality are distorted in the 
valence domain (negative cognitive biases; see reference 
35, for example), our findings indicate distortions in the 
time domain. This notion is supported by early empirical 
findings of altered time perception (36–39) and by self-re-

Discussion

We found that in depressed elders, a deficit in probabi-
listic reversal learning, a component of decision making, 
is associated with attempted suicide but not with suicidal 
ideation. Suicide attempters discounted their reinforce-
ment history to a high degree relative to nondepressed 
comparison subjects, basing their choices largely on the 
reward or punishment received in the last trial. Some sui-
cide attempters also made multiple perseverative errors. 
This impairment was not explained by lower global cogni-
tive function, effects of lifetime substance use disorders, 
or possible brain injury from suicide attempts. Further-
more, it was dissociated from cognitive abilities engaged 
outside the context of punishment and reward—forward 
planning and working memory.

FIGURE 3. Model-Based Analyses of Probabilistic Reversal Learning: Reliance on Past Reinforcement History (Memory) and 
Learning From Punishmentsa
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a Panel A shows that suicide attempters had lower memory compared to nondepressed comparison subjects (omnibus analysis of variance, 
F=2.77, df=3, 61, p=0.049; Tukey’s honestly significant difference post hoc analysis: suicide attempters < nondepressed comparison sub-
jects, p=0.039). That is, suicide attempters relied less on their previous reinforcement history in making their decisions and more on feed-
back on the last trial compared to nondepressed comparison subjects. As expected, memory was negatively correlated with the total num-
ber of switches in participant choices (panel B) and with the number of probabilistic switches (switches following noncontingent negative 
feedback, panel C). Panel D shows that while the three depressed groups, particularly suicide ideators, tended to have a lower learning rate 
from punishments, group differences were not significant: F=2.52, df=3, 61, p=0.066; suicide ideators < nondepressed comparison subjects, 
p=0.087. This was due to perseverative errors in the three depressed groups (mean values listed in Table 2): learning rate from punishments 
was negatively correlated with the number of perseverative errors (panel E). Learning rate from punishments was positively correlated with 
the proportion of switches in response to noncontingent punishment (probabilistic switches) among all switches (panel F).

Dombrovski et al. 2010
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Maximum a posteriori estimate

P(�) = p(�|a1...T ) =
p(a1...T |�)p(�)�
d�p(�|a1...T )p(�)

logP(�) =
T⇥

t=1

log p(at|�) + log p(�) + const.

logP(⇥)
d�

=
logL(⇥)

d�
+

d p(⇥)
d⇥

‣ If likelihood is strong, prior will have little effect
• mainly has influence on poorly constrained parameters
• if a parameter is strongly constrained to be outside the 

typical range of the prior, then it will win over the prior
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Maximum a posteriori estimate
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200 trials, 1 stimulus, 10 actions, learning rate = .05, beta=2
mbeta=0, meps=-3, n=1
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But

What prior parameters should I use? 
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ML characteristics: group data
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ML characteristics: group data

‣ Fixed effect
• conflates within- and between- subject variability
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ML characteristics: group data
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‣ Summary statistic
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• overestimates group variance as ML estimates noisy
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‣ MAP

‣ Empirical Bayes: set them to ML estimate

‣ where we use all the actions by all the k subjects

Estimating the hyperparameters

logP(�) = L(�) + log p(�)⇤⇥�⌅
=p(⇥|�)

+const.

�̂ = argmax
�

p(A|�)

A = {ak
1...T }K

k=1
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ML estimate of top-level parameters
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‣ Effectively we now want to do gradient ascent on:

‣ But this contains an integral over individual 
parameters:

‣ So we need to: 

Estimating the hyperparameters

�̂ = argmax
�

p(A|�)

= argmax
�

�
d ⇥p(A|⇥) p(⇥|�)

d

d�
p(A|�)

p(A|�) =
�

d⇥p(A|⇥) p(⇥|�)
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Expectation Maximisation

‣ There are other approaches
• Monte Carlo
• Analytical conjugate priors
• Variational Bayes

‣ Iterate between
• Estimating MAP parameters given prior parameters
• Estimating prior parameters from MAP parameters

log p(A|⇣) = log

Z
d✓ p(A, ✓|⇣)

= log

Z
d✓ q(✓)

p(A, ✓|⇣)
q(✓)

�
Z

d✓ q(✓) log
p(A, ✓|⇣)

q(✓)

kth E step: q(k+1)
(✓)  p(✓|A, ⇣(k))

kth M step: ⇣(k+1)  argmax

⇣

Z
d✓ q(✓) log p(A, ✓|⇣)

Jensen’s inequality
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‣ E step: 
• only need sufficient statistics to perform M step
• Approximate
• and hence:

EM with Laplace approximation

E step: qk(⇥) = N (mk,Sk)

mk � argmax
�

p(ak|⇥)p(⇥|�(i))

S�1
k � ⇤2p(ak|⇥)p(⇥|�(i))

⇤⇥2 �=mk

Just what we had before: MAP inference given some prior parameters

matlab: [m,L,,,S]=fminunc(…)

p(✓|A, ⇣(k)) ⇠ N (mk,Sk)

q(k+1)(✓) p(✓|A, ⇣(k))
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‣ Next update the prior

‣ And now iterate until convergence

EM with Laplace approximation

Prior mean = mean of MAP estimates

Prior variance depends on inverse Hessian S and variance 
of MAP estimates

M step: �(i+1)
µ =

1

K

⇤

k

mk

�(i+1)
⇥2 =

1

N

⇤

i

�
(mk)

2 + Sk

⇥
� (�(i+1)

µ )2

Take uncertainty of estimates
into account
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Hierarchical / random effects models

‣ Advantages
• Accurate group-level mean and variance
• Outliers due to weak likelihood are regularized
• Strong outliers are not
• Useful for model selection

‣ Disadvantages
• Individual estimates    depend on other data, i.e. on         

and therefore need to be careful in interpreting these as 
summary statistics

• Error bars on group parameters (especially group 
variance) are difficult to obtain

• More involved; less transparent 

✓i Aj 6=i
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‣ Sigmoid

‣   - greedy

‣ irreducible noise

‣ critical sanity check 1: reasonable link function?

‣ other link functions for other observations

Link functions

p(a|s) = e�Q(a,s)

P
a0 e�Q(a0,s)

✏ p(a|s) =
⇢

c if a = argmaxa Q(a, s)
1�c
|a|�1 else

p(a|s) = 1� g

2
+ g

e�Q(a,s)

P
a0 e�Q(a0,s)
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0

0.5

1

Empirical Probability(Go)

Pr
ed

ic
te

d 
Pr

ob
ab

ilit
y(

G
o)

−2

0

2

Q
(a
)

0

0.5

1

P(
a)

0

0.5

1

P(
a)

0

0.5

1

P(
a)

Monday, 17 September 12



Behavioural data modelling Quentin Huys, TNU/PUKSchloss Ringberg 17.9.2012

Model comparison

‣ A fit by itself is not meaningful
‣ Generative test

• qualitative

‣ Comparisons
• vs random 
• vs other model -> test specific hypotheses and isolate 

particular effects in a generative setting
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Model fit: likelihood

‣ How well does the model do?
• choice probabilities:

• typically around 0.65-0.75 for 2-way choice
• for 10-armed bandit example
• pseudo-r2: 1-L/R
• better than chance? 

0 0.2 0.4 0.6 0.8
0

50

100

150

200

Predictive Probability

C
o

u
n

t

“Predictive probabilities”

Ep(correct) = eL(�̂)/K/T

= elog p(A|�)/K/T

=

�

⇤
K,T⇧

k,t=1

p(ak,t|�k)

⇥

⌅

1
KT

E[Nk(correct)] = E[pk(correct)]T
pbin(E[Nk(correct)]|Nkd, p0 = 0.5) < 1� �
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Generative test

‣ Model: probability(actions)
• simply draw from this distribution, and see what happens

‣ Critical sanity test: is the model meaningful?
‣ Caveat: overfitting

Go rewarded
Go to win
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Overfitting

X

Y
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Model comparison
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Model comparison 

‣ Averaged over its parameter settings, how well does 
the model fit the data?

‣ Model comparison: Bayes factors

‣ Problem: 
• integral rarely solvable 
• approximation: Laplace, sampling, variational...

p(A|M) =

Z
d✓ p(A|✓) p(✓|M)

BF =
p(M1|A)

p(M0|A)
=

p(A|M1) p(M1)

p(A|M2) p(M2)
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Why integrals? The God Almighty test
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Why integrals? The God Almighty test
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Why integrals? The God Almighty test
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1

N
(p(X|�1) + p(X|�2) + · · · )

These two factors fight it out
Model complexity vs model fit
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‣ Laplace’s approximation (saddle-point method)

Bayesian Information Criterion

X

Y

X
lo
g(
Y)
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‣ Laplace’s approximation (saddle-point method)

Bayesian Information Criterion
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‣ Laplace’s approximation (saddle-point method)

Bayesian Information Criterion
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Y

X
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‣ Laplace’s approximation (saddle-point method)

Bayesian Information Criterion

X

Y

X
lo
g(
Y)

Just a Gaussian�
dx f(x) � f�(x0)

⇥
2�⇥2
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p(A|M) =

Z
d✓ p(A|✓,M) p(✓|M)

⇡ p(A|✓ML,M)p(✓ML|M)⇥
q

(2⇡)N |⌃|

log p(A|M) ⇡ log p(A|✓ML,M) +

1

2

log(|⌃|) + N

2

log(2⇡)

Bayesian Information Criterion: one subject
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p(A|M) =

Z
d✓ p(A|✓,M) p(✓|M)

⇡ p(A|✓ML,M)p(✓ML|M)⇥
q

(2⇡)N |⌃|

log p(A|M) ⇡ log p(A|✓ML,M) +

1

2

log(|⌃|) + N

2

log(2⇡)

Bayesian Information Criterion: one subject

is propto Gaussian
p(A|✓) p(✓|M)
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p(A|M) =

Z
d✓ p(A|✓,M) p(✓|M)

⇡ p(A|✓ML,M)p(✓ML|M)⇥
q

(2⇡)N |⌃|

log p(A|M) ⇡ log p(A|✓ML,M) +

1

2

log(|⌃|) + N

2

log(2⇡)

Bayesian Information Criterion: one subject

is propto Gaussian
p(A|✓) p(✓|M)
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p(A|M) =

Z
d✓ p(A|✓,M) p(✓|M)

⇡ p(A|✓ML,M)p(✓ML|M)⇥
q

(2⇡)N |⌃|

log p(A|M) ⇡ log p(A|✓ML,M) +

1

2

log(|⌃|) + N

2

log(2⇡)

Bayesian Information Criterion: one subject

is propto Gaussian

Model doesn’t prefer
particular 

p(A|✓) p(✓|M)

p(✓|M) = const.
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p(A|M) =

Z
d✓ p(A|✓,M) p(✓|M)
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q

(2⇡)N |⌃|
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p(A|M) =

Z
d✓ p(A|✓,M) p(✓|M)

⇡ p(A|✓ML,M)p(✓ML|M)⇥
q

(2⇡)N |⌃|

log p(A|M) ⇡ log p(A|✓ML,M) +
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2
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Model doesn’t prefer
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p(✓|M) = const.
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p(A|M) =

Z
d✓ p(A|✓,M) p(✓|M)

⇡ p(A|✓ML,M)p(✓ML|M)⇥
q

(2⇡)N |⌃|

log p(A|M) ⇡ log p(A|✓ML,M) +

1

2

log(|⌃|) + N

2

log(2⇡)

Bayesian Information Criterion: one subject

is propto Gaussian

Model doesn’t prefer
particular 

p(A|✓) p(✓|M)

p(✓|M) = const.

⌃ii /
1

T
) 1

2

log(|⌃|) ⇡ �N
2 log(T ) Bayesian Information Criterion (BIC)

⇡ �N Akaike Information Criterion (AIC)
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p(A|M) =

Z
d✓ p(A|✓,M) p(✓|M)

⇡ p(A|✓ML,M)p(✓ML|M)⇥
q

(2⇡)N |⌃|

log p(A|M) ⇡ log p(A|✓ML,M) +

1

2

log(|⌃|) + N

2

log(2⇡)

Bayesian Information Criterion: one subject

is propto Gaussian

Model doesn’t prefer
particular 

Model fit vs Model complexity

p(A|✓) p(✓|M)

p(✓|M) = const.

⌃ii /
1

T
) 1

2

log(|⌃|) ⇡ �N
2 log(T ) Bayesian Information Criterion (BIC)

⇡ �N Akaike Information Criterion (AIC)
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Group data

‣ Multiple subjects
‣ Multiple models

• do they use the same model? If not parameters are not 
comparable

• which model best accounts for all of them?

‣ Multiple groups
• difference in models?
• difference in parameters?
• 2k possible model comparisons

‣ Multiple parameters
• 2k possible correlations with any one psychometric 

measure
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Group data - approaches

‣ Summary statistic
• Treat individual model comparison measure as summary 

statistics, do ANOVA or t-test

‣ Fixed effect analysis
• Subject data independent

‣ Random effects analyses
• Hierarchical prior on group parameters

• Hierarchical prior on models

log p(A|M) =

X

i

log p(Ai|M)

=

X

i

log

Z
d✓i p(Ai|✓i)p(✓i|Mi) ⇡ �1

2

X

i

BICi

p(A|M) =

Z
d⇣

Z
d✓ p(A|✓) p(✓|⇣) p(⇣|M)

p(A,Mk, r|↵) = p(A|Mk) p(Mk|r) p(r|↵)
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�

�

K

A
T

Group-level likelihood

‣ Contains two integrals: 
• subject parameters
• prior parameters

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)

M
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Evaluating p(A|M)

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)

�

�

K

A
T

M
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Evaluating p(A|M)

‣ Two integrals
• tricky

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)

�

�

K

A
T

M
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Evaluating p(A|M)

‣ Two integrals
• tricky

‣ Step by step: approximating levels separately
• Top level first: 

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)

�

�

K

A
T

M
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Evaluating p(A|M)

‣ Two integrals
• tricky

‣ Step by step: approximating levels separately
• Top level first: 

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)

p(A|M) =

�
d� p(A|�,M) p(�|M)

⇤ p(A|�ML,M)p(�ML|M)⇥
⇥

(2⇥)N |�|�1

log p(A|M) ⇤ log p(A|�ML,M)� 1

2
log(|�|) + N

2
log(2⇥)

��

�

K

A
T

M
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Evaluating p(A|M)

‣ Two integrals
• tricky

‣ Step by step: approximating levels separately
• Approximate at the top level
• less action

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)

p(A|M) =

�
d� p(A|�,M) p(�|M)

⇥ p(A|�ML,M)p(�ML|M)�
⇥

(2⇥)N |�|

log p(A|M) ⇥ log p(A|�ML,M) +
1

2
log(|�|) + N

2
log(2⇥)
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Evaluating p(A|M)

‣ Two integrals
• tricky

‣ Step by step: approximating levels separately
• Approximate at the top level
• less action

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)

p(A|�,M) p(�|M)

p(A|M) =

�
d� p(A|�,M) p(�|M)

⇥ p(A|�ML,M)p(�ML|M)�
⇥

(2⇥)N |�|

log p(A|M) ⇥ log p(A|�ML,M) +
1

2
log(|�|) + N

2
log(2⇥)
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Evaluating p(A|M)

‣ Two integrals
• tricky

‣ Step by step: approximating levels separately
• Approximate at the top level
• less action

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)

p(A|�,M) p(�|M)
is propto Gaussian

p(A|M) =

�
d� p(A|�,M) p(�|M)

⇥ p(A|�ML,M)p(�ML|M)�
⇥

(2⇥)N |�|

log p(A|M) ⇥ log p(A|�ML,M) +
1

2
log(|�|) + N

2
log(2⇥)
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Evaluating p(A|M)

‣ Two integrals
• tricky

‣ Step by step: approximating levels separately
• Approximate at the top level
• less action

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)

p(A|�,M) p(�|M)
is propto Gaussian

Model doesn’t prefer
particular �

p(A|M) =

�
d� p(A|�,M) p(�|M)

⇥ p(A|�ML,M)p(�ML|M)�
⇥

(2⇥)N |�|

log p(A|M) ⇥ log p(A|�ML,M) +
1

2
log(|�|) + N

2
log(2⇥)
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Evaluating p(A|M)

‣ Two integrals
• tricky

‣ Step by step: approximating levels separately
• Approximate at the top level
• less action

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)

p(A|�,M) p(�|M)
is propto Gaussian

Model doesn’t prefer
particular �

p(A|M) =

�
d� p(A|�,M) p(�|M)

⇥ p(A|�ML,M)p(�ML|M)�
⇥

(2⇥)N |�|

log p(A|M) ⇥ log p(A|�ML,M) +
1

2
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Evaluating p(A|M)

‣ Two integrals
• tricky

‣ Step by step: approximating levels separately
• Approximate at the top level
• less action

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)

p(A|�,M) p(�|M)
is propto Gaussian

Model doesn’t prefer
particular �

p(A|M) =

�
d� p(A|�,M) p(�|M)

⇥ p(A|�ML,M)p(�ML|M)�
⇥

(2⇥)N |�|

log p(A|M) ⇥ log p(A|�ML,M) +
1

2
log(|�|) + N
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Evaluating p(A|M)

‣ Two integrals
• tricky

‣ Step by step: approximating levels separately
• Approximate at the top level
• less action

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)

p(A|�,M) p(�|M)
is propto Gaussian

Model doesn’t prefer
particular �

just as before, top-level BIC

p(A|M) =

�
d� p(A|�,M) p(�|M)

⇥ p(A|�ML,M)p(�ML|M)�
⇥

(2⇥)N |�|

log p(A|M) ⇥ log p(A|�ML,M) +
1

2
log(|�|) + N

2
log(2⇥)
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Approximating level 1

‣ Still leaves the first level:
• Approximate integral by sampling, e.g. importance 

sampling for few dimensions (<10)

log p(A|�ML,M) = log

⇥
d⇥ p(A|⇥) p(⇥|�ML)

⇥ log
1

B

B�

b=1

p(A|⇥b)

⇥b � p(⇥|�ML)
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Group-level BIC

log p(A|M) =

�
d� p(A|�) p(�|M)

⇥ �1

2
BICint

= log p̂(A|�̂ML)� 1

2
|M| log(|A|)
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Go Nogo

Rewarded

Avoids loss

Example task

Guitart-Masip, Huys et al. Submitted
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Go Nogo
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Model validation: generating data
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p(go|st) � Qt(go|st) + bias(go)
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Model validation: generating data
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P(go) ∝ value of stimulus
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Model comparison: overfitting?
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How does it do? 
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Fitted by EM...
too nice?

Monday, 17 September 12



Behavioural data modelling Quentin Huys, TNU/PUKSchloss Ringberg 17.9.2012

Top-level Laplacian approximation

‣ Estimating the top-level determinant
• using 2nd order finite differences

• the shifted likelihoods can be evaluated by shifting the 
samples. 

d2

dh2
ij

p(A|�)

�����
�=�̂ML

⇥ 1

�2

⇥
p(A|�̂ML + �ei)�

2p(A|�̂ML) + p(A|�̂ML � �ej)
⇤
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Group level errors
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Posterior distribution on models

‣ Generative model for models

density on model space itself, using a Bayesian approach as described
in the next section.

Bayesian inference on model space
Previously, we have suggested the use of a group Bayes factor (GBF)

that is simply the product of Bayes factors over N subjects (Stephan et
al., 2007b). This is equivalent to a fixed effects analysis that rests on
multiplying the marginal likelihoods over subjects to furnish the
probability of the multi-subject data, conditioned on each model:

GBFi; j =
YN

n=1
BF nð Þ

i; j : ð2Þ

Here, the subscripts i,j refer to the models being compared, and
the bracketed superscript refers to the n-th subject. The reason one
can simply multiply the probabilities (or add the log-evidences) is
that the measured data can be regarded as conditionally independent
samples over subjects. However, this does not represent a formal
evaluation of the conditional density of a particular model given data
from all subjects. Furthermore, it rests upon a very particular
generative model for group data: first, select one of K models from
a multinomial distribution and then generate data, under this model,
for each of the N subjects. This is fundamentally different from a
generative model which treats subjects as random effects: here we
would select a model for each subject by sampling from a
multinomial distribution, and then generate data under that
subject-specific model. The distinction between these two generative
models is illustrated graphically in Fig. 1.

In short, the GBF encodes the relative probability that the data
were generated by one model relative to another, assuming the data
were generated by the same model for all subjects. What we often
want, however, is the density from which models are sampled to
generate subject-specific data. In other words, we seek the conditional
estimates of the multinomial parameters, i.e. the model probabilities
r=[r1,…,rK], that generate switches or indicator variables, mn=
[mn1,…,mnK], where mnk∈{0,1} for any given subject n∈ {1,…,N}, and
only one of these switches is equal to one; i.e., PK

k=1
mnk = 1. These

indicator variables prescribe the model for the n-th subject; where p
(mnk=1)=rk. In the following, we describe a hierarchical Bayesian
model that can be inverted to obtain an estimate of the posterior
density over r.

A variational Bayesian approach for inferring model probabilities

Wewill deal with Kmodels with probabilities r=[r1,…,rK] that are
described by a Dirichlet distribution:

p r jαð Þ = Dir r;αð Þ = 1
Z αð Þ

Y

k

rαk − 1
k

Z αð Þ =
Q

k Γ αkð Þ
Γð
P

k
αkÞ

: ð3Þ

Here, α=[α1,…,αK] are related to the unobserved “occurrences” of
models in the population; i.e. αk−1 can be thought of as the effective
number of subjects in which model k generated the observed data.
Given the probabilities r, the distribution of themultinomial variablemn

describes the probability that model k generated the data of subject n:

p mn jrð Þ =
Y

k

rmnk
k : ð4Þ

For any given subject n, we can sample from this multinomial
distribution to obtain a particular model k. The marginal likelihood of
the data in the n-th subject, given this model k, is then obtained by
integrating over the parameters of the model selected:

p yn jmnkð Þ =
R
p y jϑð Þp ϑ jmnkð Þdϑ: ð5Þ

The graphical model summarising the dependencies among r, m
and y as described by Eqs. (3)–(5) is shown in Figs. 1B and C. Our goal
is to invert this hierarchical model and estimate the posterior
distribution over r.

Given the structure of the hierarchical model in Fig. 1, the joint
probability of the parameters and the data y can be written as:

p y;r;mð Þ = p y jmð Þp m jrð Þp r jα0ð Þ

= p r jα0ð Þ
Y

n
p yn jmnð Þp mn jrð Þ

" #

=
1

Z α0ð Þ
Y

k

rα0k − 1
k

" #
Y

n
p yn jmnð Þ

Y

k

rmnk
k

" #

=
1

Z α0ð Þ
Y

n

Y

k

p yn jmnkð Þrk½ $mnk rα0k − 1
k

" #
: ð6Þ

Fig. 1. Bayesian dependency graphs for fixed effects (A) and random effects generative models for multi-subject data (B, C). The graphical model in panels B and C are equivalent; we
show both because 1B is more intuitive for readers unfamiliar with graphical models whereas 1C uses a more compact notation where rectangles denote deterministic parameters
and shaded circles represent observed values. α=parameters of the Dirichlet distribution (number of model “occurrences”); r=parameters of the multinomial distribution
(probabilities of the models); m=model labels; y=observed data; k=model index; K=number of models; n=subject index; N=number of subjects.

1006 K.E. Stephan et al. / NeuroImage 46 (2009) 1004–1017

Stephan et al. 2009
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Bayesian model selection - equations

‣ Write down joint distribution of generative model
‣ Variational approximations lead to set of very 

simple update equations
• start with flat prior over model probabilities

• then update

The log joint probability is therefore given by:

lnp y;r;mð Þ = − ln Z α0ð Þ +
X

n

X

k

ð α0k − 1ð Þ ln rk

+ mnk ln p yn jmnkð Þ + ln rkð ÞÞ: ð7Þ

The inversion of our hierarchical model relies on the following
variational Bayesian (VB) approach in which we assume that an
approximate posterior density q can be described by the following
mean-field factorisation:

q r;mð Þ = q rð Þq mð Þ

q rð Þ~ exp I rð Þð Þ

q mð Þ~ exp I mð Þð Þ

I rð Þ = hln p y;r;mð Þiq mð Þ

I mð Þ = hln p y;r;mð Þiq rð Þ: ð8Þ

Here, I(r) and I(r) are variational energies for the mean-field
partition. Note that throughout the paper we use "log" and "ln"
interchangeably to refer to the natural logarithm. The mean-field
assumption in Eq. (8) means that the VB posterior will only be
approximate but, as we shall see, it provides a particularly simple and
intuitive algorithm (c.f. Eq. (14)). This algorithm provides precise
estimates of the parameters α defining the approximate Dirichlet
posterior q(r)≈p(r|y); this was verified by comparisons with a
sampling method which is described in Appendix B.

To obtain the approximate posterior q(m)≈p(m|y), we have to
do two things: first, compute I(m) and second, determine the
normalizing constant or partition function for exp(I(m)), which
renders q(m) a probability density. Making use of the log joint
probability in Eq. (7) and omitting terms that do not depend on m,
the variational energy is:

I mð Þ =
R
q rð Þ lnp y;r;mð Þdr

=
X

n

X

k

mnk lnp yn jmnkð Þ +
R
q rkð Þ ln rkdrk

! "

=
X

n

X

k

mnk lnp yn jmnkð Þ + W αkð Þ− W αSð Þð Þ: ð9Þ

Here, αS =
P
k
αk and Ψ is the digamma function.2

W αkð Þ = B ln C αkð Þ
Bαk

: ð10Þ

The next step is to obtain the approximate posterior, q(m): If gnk is
our (normalized) posterior belief that model k generated the data
from subject n, i.e. gnk=q(mnk=1), then Eq. (9) tells us that:

gnk =
unk

un

unk = exp lnp yn jmnkð Þ + W αkð Þ− W αSð Þð Þ

un =
X

k

unk ð11Þ

where unk is the equivalent (non-normalized) belief and un is the
partition function for exp(I(m)) that ensures that the posterior
probabilities sum to one.

We now repeat the above procedure but this time for the
approximate posterior over r. By substituting in the log joint
probability from Eq. (7) and omitting terms that do not depend on
r, we have:

I rð Þ =
R
q mð Þ ln p y; r;mð Þdm

=
X

k

α0k − 1ð Þ ln rk +
X

n
gnk ln rk

" #

=
X

k

α0k + βk − 1ð Þ ln rk: ð12Þ

Here, βk=Σgnk is the expected number of subjects whose data we
believewere generated bymodel k. Now, fromEq. (8)we have ln q(r)=
I(r)+… and from Eq. (3) we see that the log of a Dirichlet density is
given by lnDir r;að Þ =

P
k

αk − 1ð Þ ln rk + N . Hence, by comparing

terms we see that the approximate posterior q(r)=Dir(r; α) where:

α = α0 + β: ð13Þ

In short, Eq. (13) simply adds the ‘data counts’, β, to the ‘prior
counts’, α0. This is an example of a free-form VB approximation,
where the optimal form of the approximate posterior (in this case
a Dirichlet), has been derived rather than assumed before-hand
(c.f. fixed-form VB approximations; Friston et al., 2007). It should be
stressed, however, that due to the mean-field assumption used by our
VB approach (see Eq. (8)), q(r) is only an approximate posterior and
the true posterior distribution p(r|y) does not necessarily have the
exact form of a Dirichlet distribution.

The above equations can be implemented as an optimisation
algorithmwhich updates estimates of α iteratively until convergence.
By combining Eqs. (11), (12) and (13) we get the following pseudo-
code of a simple algorithm that gives us the parameters of the
conditional density we seek, i.e. q(r)=Dir(r; α):

α = α0:

Until convergence:

unk = exp lnp yn jmnkð Þ + W αkð Þ− W
X

k

αk

 ! !

βk =
X

n

unkP
k unk

α = α0 + β ð14Þ

end.

We make the usual assumption that, a priori; no models have been
“seen” (i.e. the Dirichlet prior is α0=[1,…,1]).3 Critically, this scheme
requires only the log-evidences over models and subjects (c.f.
Eq. (11)).

Using the Dirichlet density p(r|y; α) for model comparison

After the above optimisation of the Dirichlet parameters, α, the
Dirichlet density p(r|y; α) can be used for model comparisons at the
group level. There are several ways to report this comparison that

2 See Appendix B in Bishop (2006) concerning the use of the digamma function in
Eq. 10.

3 Note that this choice of Dirichlet prior is a “flat” prior, assigning uniform
probabilities to all models. In contrast, a Dirichlet prior with elements below unity
results in a highly concave probability density that concentrates the probability mass
around zero and one, respectively.

1007K.E. Stephan et al. / NeuroImage 46 (2009) 1004–1017
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Group Model selection

Integrate out your parameters
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Questions in psychiatry I: regression

‣ Parametric relationship with other variables
• do standard second level analyses
• can use Hessians to determine weights

• better: compare two models

E step: qk(⇥) = N (mk,Sk)

mk � argmax
�

p(ak|⇥)p(⇥|�(i))

S�1
k � ⇤2p(ak|⇥)p(⇥|�(i))

⇤⇥2 �=mk

Model 1:

Q
i p(Ai|✓i) p(✓i|µ0,�)

i.e. ✓i ⇠ N (µ0,�)

Model 2:

Q
i p(Ai|✓i) p(✓i|µ0, c,�, i)

i.e. ✓i ⇠ N (µ0 + c i,�)
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Regression

‣ Standard regression analysis: 

‣ Including uncertainty about each subject’s inferred 
parameters

‣ Careful: Finite difference estimates S can be noisy!
• regularize... 

mi = Cri + �1/2� �i

mi = Cri + (�1/2 + S1/2
i )� �i
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Questions in psychiatry II: group differences

‣ Do groups differ in terms of parameter(s)?
‣ Cannot compare parameters across different 

models
• even very similar parameters can account for different 

effects

‣ For models with k parameters, there are 2k possible 
comparisons
• multiple comparisons?
• posterior over models (Stephan et al. 2009)
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Group differences in parameters

‣ Are two groups similar in parameter x?
‣ ANOVA: compare likelihood of two means to 

likelihood of one global mean. Take degrees of 
freedom into account. 

‣ But: this tries to account for the parameters with 
one or two groups, not for the data

‣ Compare models with separate or joint parameter 
& prior: 

Model 1 ε β1, β2

Model 2 ε β
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Questions in psychiatry III: Classification

‣ Who belongs to which of two groups?
‣ How many groups are there?
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Model comparison again

‣ What is ‘significant’? 

‣ “Spread of effect” in group comparisons
• Better model does not mean a behavioural effect is 

concentrated in one parameter
• Obvious raw differences spread between parameters

Kassand Raftery: Bayes Factors 777

4. CALCULATING BAYES FACTORS

In some elementary cases the integral (2), which we will
rewrite in this section as

where d is the dimension of 8.
This is Laplace's method of approximation (de Bruijn

1970, sec. 4.4; Tierney and Kadane 1986). For many prob-
lems in which the sample size n is moderate, it produces
answers well within the accuracy required for drawing con-
clusions according to the scheme of Section 3.2. Formally,

H k ) = LSk • It follows that the log Bayes factor is log B10
= LSI - LSo; that is, the difference in predictive scores. Thus
the Bayes factor can be viewed as measuring the relative
success ofHI and Ho at predicting the data. This is related
to prequential analysis (Dawid 1984) and also to stochastic
complexity (Rissanen 1987); the connections were discussed
by Dawid ( 1992) and Hartigan ( 1992). Good ( 1985), and
in many other publications, has referred to the log Bayes
factor as the "weight of evidence."

(3)I = I pr(DIO, H)1r(OIH) dO,
may be evaluated analytically. More often, it is intractable
and thus must be computed by numerical methods. But most
available software developed by numerical analysts is gen-
erally so inefficient for these integrals that it is of little use.
One reason is that when sample sizes are moderate or large,
the integrand becomes highly peaked around its maximum,
which may be found by other techniques, and quadrature
methods that do not begin with knowledge ofthe maximum
are likely to have difficulty finding the region where the in-
tegrand mass is accumulating. A second reason is that some
problems are of high dimension. In this case Monte Carlo
methods may be used, but these too need to be adapted to
the statistical context. A review of various numerical inte-
gration strategies for evaluating the integral in (3) is provided
by Evans and Swartz ( 1995).
Exact analytic evaluation ofthe integral (3) is possible for

exponential family distributions with conjugate priors, in-
cluding normal linear models (DeGroot 1970, chap. 9; Zell-
ner 1971, chap. 10).

4.1 Asymptotic Approximation
4.1.1 Laplace's Method. A useful approximation to the

marginal density of the data as given by (3) is obtained by
assuming that the posterior density, which is proportional
to (pr(D 18,H)1r( 8IH)), is highly peaked about its maximum
8, which is the posterior mode. This will usually be the case
if the likelihood function pr(D 18, H) is highly peaked near
its maximum fJ, which will be the case for large samples. Let
[(8) = 10g(pr(D18, H)1r( 81H)). Expanding [(8) as a qua-
dratic about 8 and then exponentiating yields an approxi-
mation to (pr(DI8, H)1r(8IH)) that has the form of a
normal density with mean 8 and covariance matrix ±
= (- D2[(8))-1, where D2[(8) is the Hessian matrix of second
derivatives. Integrating this approximation yields

i = (21r)d/21±11/2pr(D 18,H)1r( 81H), (4)

IOglO(B1O) B10 Evidence against Ho

o to 1/2 1 to 3.2 Not worth more than a bare
mention

1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
>2 >100 Decisive

210ge(B1o) (B1O) Evidence against Ho

oto 2 1 to 3 Not worth more than a bare
mention

2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
>10 >150 Very strong

{3 and 1/; may be vectors. Although the expression ( 1) does
not require the models to be nested, the case of nested models
is of special interest in the Bayesian approach as well, and
we will refer to it frequently in what follows.

3.2 Interpretation

The Bayes factor is a summary of the evidence provided
by the data in favor of one scientific theory, represented by
a statistical model, as opposed to another. Jeffreys (1961,
app. B) suggested interpreting B10 in half-units on the 10glO
scale. Pooling two of his categories together for simplification,
we have:

From our own experience, these categories seem to furnish
appropriate guidelines.
The logarithm ofthe marginal probability ofthe data may

alsobeviewedas a predictive score. This is of interest, because
it leads to an interpretation ofthe Bayes factor that does not
depend on viewing one of the models as "true." Suppose
that D = {Yl' ... , Yn} and that for each i, we form a pre-
dictive distribution pri (·)of Yi given the already available
data {Yl' ... , Yi-l }. We use the logarithmic scoring rule,
log pri(Yi) (Good 1952), to assess performance. Then the
overall score of any rule that generates such predictive dis-
tributions is LS = Li log pri(Yi). In particular, if the pre-
diction rule is derived from the model H; (i.e., likelihood
and prior), then log pr(DIHk ) = Li log pr(Yi IYi-h ... ,Yl,

Probability itself provides a meaningful scale defined by bet-
ting, and so these categories are not a calibration of the Bayes
factor, but rather a rough descriptive statement about stan-
dards of evidence in scientific investigation. We speak here
in terms of B10, because weighing evidence against a null
hypothesis is more familiar, but Bayes factors can equally
well provide evidence in favor ofa null hypothesis. Ofcourse,
the interpretation may depend on the context. For example,
Evett ( 1991) has argued that for forensic evidence alone to
beconclusive in a criminal trial, one would require posterior
odds for HI (guilt) against Ho (innocence) of at least 1,000
rather than the 100 suggested by Jeffreys.
It can be useful to consider twice the natural logarithm of

the Bayes factor, which is on the same scale as the familiar
deviance and likelihood ratio test statistics. Rounding and
using 20 rather than 10 as the requirement for strong evi-
dence, we then obtain a slight modification:

Kaas and Raftery 95

BF =
p(A|M1)

p(A|M2)

p(⇤ < ⌘)
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Behavioural data modelling

‣ Are no panacea
• statistics about specific aspects of decision machinery
• only account for part of the variance

‣ Model needs to match experiment
• ensure subjects actually do the task the way you wrote it 

in the model
• model comparison

‣ Model = Quantitative hypothesis
• strong test
• need to compare models, not parameters
• includes all consequences of a hypothesis for choice
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Modelling in psychiatry

‣ Hypothesis testing
• otherwise untestable hypotheses
• internal processes

‣ Limited by data quality
• Look for strong behaviours, not noisy

‣ “Holistic” testing of hypotheses
‣ Marr’s levels

• physical
• algorithm
• computational
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