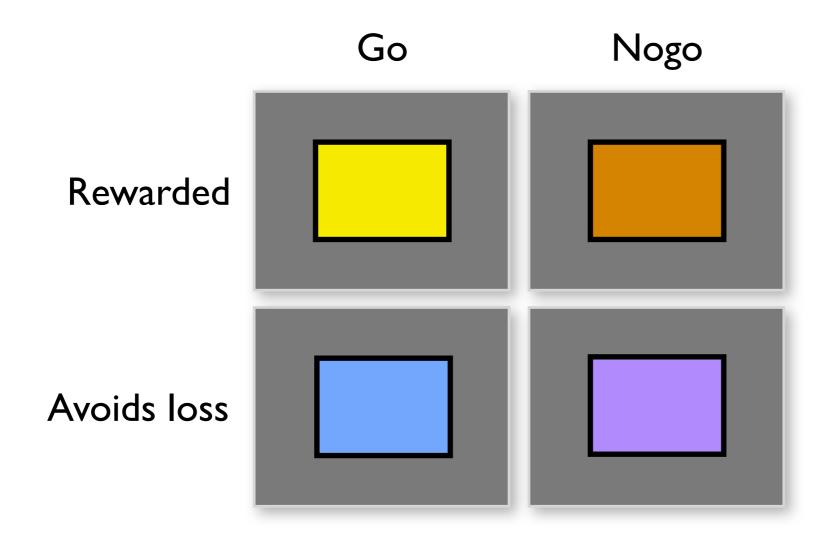
Modelling behavioural data

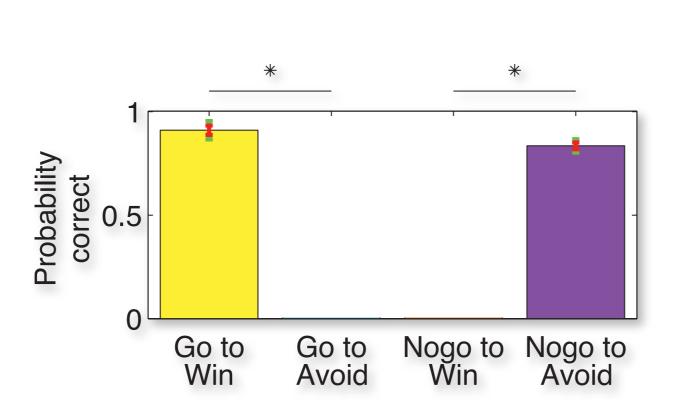
Quentin Huys
MA PhD MBBS MBPsS

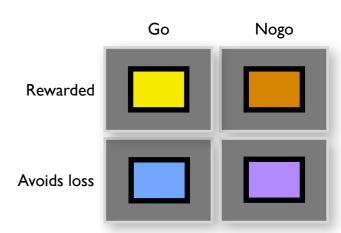
Translational Neuromodeling Unit, ETH Zürich Psychiatrische Universitätsklinik Zürich

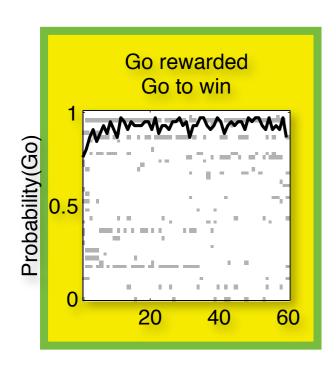
Outline

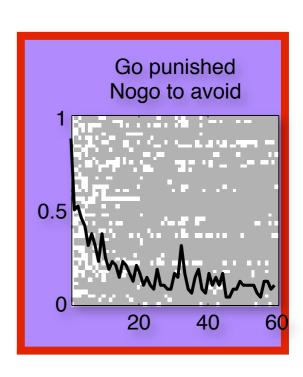
- An example task
- Why build models? What is a model
- Fitting models
- Validating & comparing models
- Model comparison issues in psychiatry



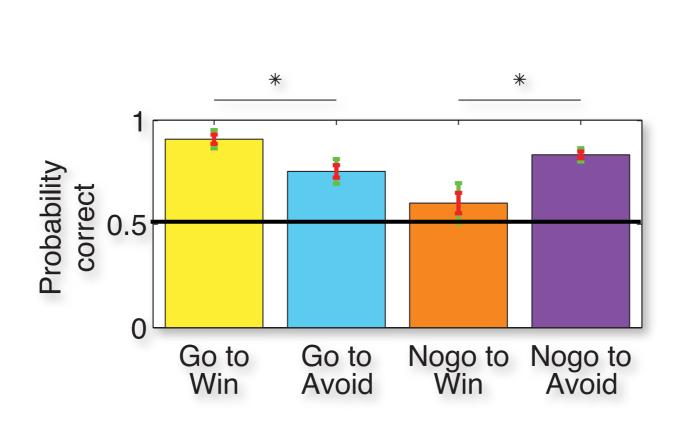


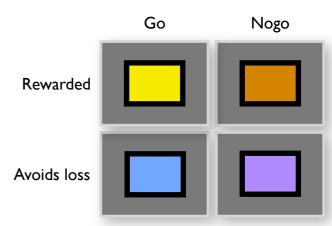


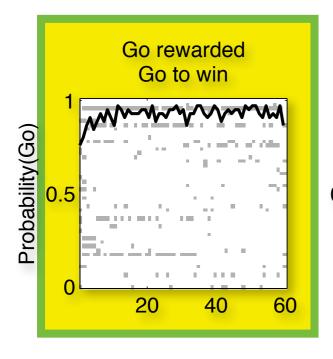


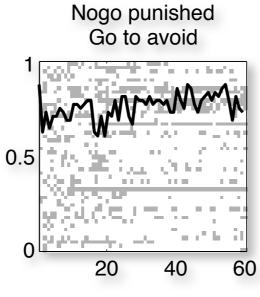


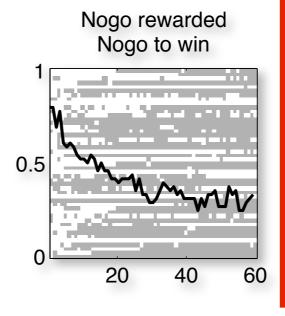
Guitart-Masip, Huys et al. Submitted

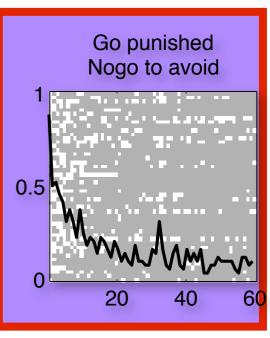






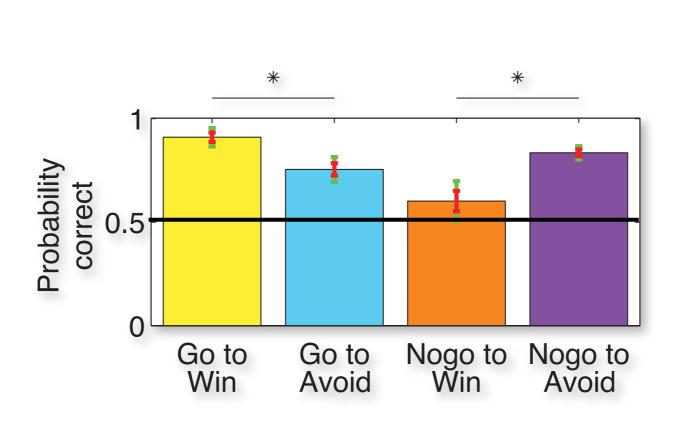


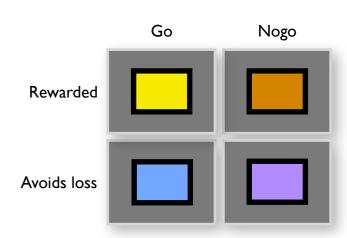


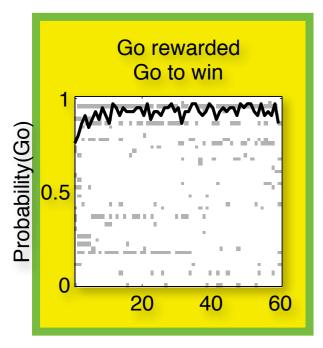


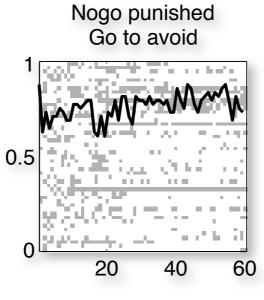
Guitart-Masip, Huys et al. Submitted

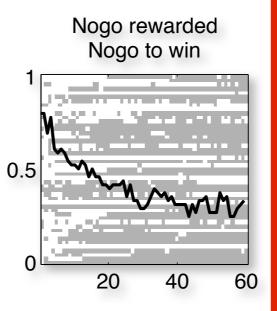
Quentin Huys, TNU/PUK Schloss Ringberg 17.9.2012 Behavioural data modelling

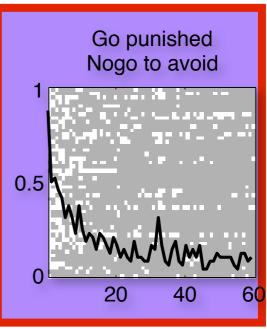












Think of it as four separate two-armed bandit tasks

Guitart-Masip, Huys et al. Submitted

Schloss Ringberg 17.9.2012 Quentin Huys, TNU/PUK Behavioural data modelling

Analysing behaviour

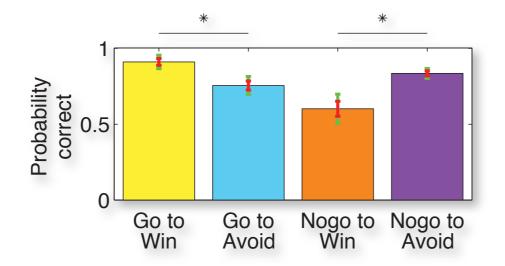
- Standard approach:
 - Decide which feature of the data you care about
 - Run descriptive statistical tests, e.g. ANOVA

- Many strengths
- Weakness
 - Piecemeal, not holistic / global
 - Descriptive, not generative
 - No internal variables

Analysing behaviour

Standard approach:

- Decide which feature of the data you care about
- Run descriptive statistical tests, e.g. ANOVA



- Many strengths
- Weakness
 - Piecemeal, not holistic / global
 - Descriptive, not generative
 - No internal variables

Models

Holistic

 Aim to model the process by which the data came about in its "entirety"

Generative

 They can be run on the task to generate data as if a subject had done the task

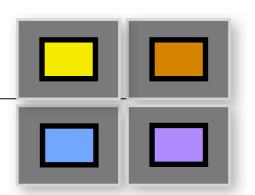
Inference process

- Capture the inference process subjects have to make to perform the task.
- Do this in sufficient detail to replicate the data.

Parameters

- replace test statistics
- their meaning is explicit in the model
- their contribution to the data is assessed in a holistic manner

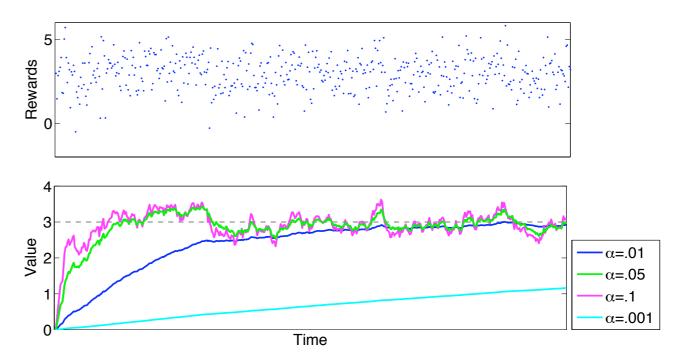
A simple Rescorla-Wagner model



Q values

$$Q_t(a_t, s_t) = Q_{t-1}(a_t, s_t) + \epsilon(r_t - Q_{t-1}(a_t, s_t))$$

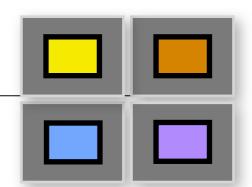
- a_t action on trial t; can be either 'go' or 'logo'
- s_t stimulus presented on trial t
- ϵ learning rate



Key points:

- Q is the key part of the hypothesis
- formally states the learning process in quantitative detail
- formalizes internal quantities that are used in the task

Actions



Q values

$$Q_t(a_t, s_t) = Q_{t-1}(a_t, s_t) + \epsilon(r_t - Q_{t-1}(a_t, s_t))$$

Action probabilities: "softmax" of Q value

$$p(a_t|s_t, h_t, \beta) = p(a_t|\mathcal{Q}(a_t, s_t), \beta)$$

$$= \frac{e^{\beta \mathcal{Q}(a_t, s_t)}}{\sum_{a'} e^{\beta \mathcal{Q}(a', s_t)}}$$

▶ Features:

$$p(a_t|s_t) \propto \mathcal{Q}(a_t, s_t)$$
$$0 \le p(a) \le 1$$

- links learning process and observations
 - choices, RTs, or any other data
 - link function in GLMs
 - man other forms

Fitting models I

Maximum likelihood (ML) parameters

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \mathcal{L}(\theta)$$

where the likelihood of all choices is:

$$\mathcal{L}(\theta) = \log p(\{a_t\}_{t=1}^T | \{s_t\}_{t=1}^T, \{r_t\}_{t=1}^T, \underbrace{\theta}_{\beta, \epsilon})$$

$$= \log p(\{a_t\}_{t=1}^T | \{\mathcal{Q}(s_t, a_t; \epsilon)\}_{t=1}^T, \beta)$$

$$= \log \prod_{t=1}^T p(a_t | \mathcal{Q}(s_t, a_t; \epsilon), \beta)$$

$$= \sum_{t=1}^T \log p(a_t | \mathcal{Q}(s_t, a_t; \epsilon), \beta)$$

Fitting models II

- No closed form
- Use your favourite method
 - gradients
 - fminunc / fmincon...
- Gradients for RW model

$$\frac{d\mathcal{L}(\theta)}{d\theta} = \frac{d}{d\theta} \sum_{t} \log p(a_{t}|\mathcal{Q}_{t}(a_{t}, s_{t}; \epsilon), \beta)$$

$$= \sum_{t} \frac{d}{d\theta} \beta \mathcal{Q}_{t}(a_{t}, s_{t}; \epsilon) - \sum_{a'} p(a'|\mathcal{Q}_{t}(a', s_{t}; \epsilon), \beta) \frac{d}{d\theta} \beta \mathcal{Q}_{t}(a', s_{t}; \epsilon)$$

$$\frac{d\mathcal{Q}_{t}(a_{t}, s_{t}; \epsilon)}{d\epsilon} = (1 - \epsilon) \frac{d\mathcal{Q}_{t-1}(a_{t}, s_{t}; \epsilon)}{d\epsilon} + (r_{t} - \mathcal{Q}_{t-1}(a_{t}, s_{t}; \epsilon))$$

Little tricks

Transform your variables

$$\beta = e^{\beta'}$$

$$\Rightarrow \beta' = \log(\beta)$$

$$\epsilon = \frac{1}{1 + e^{-\epsilon'}}$$

$$\Rightarrow \epsilon' = \log\left(\frac{\epsilon}{1 - \epsilon}\right)$$

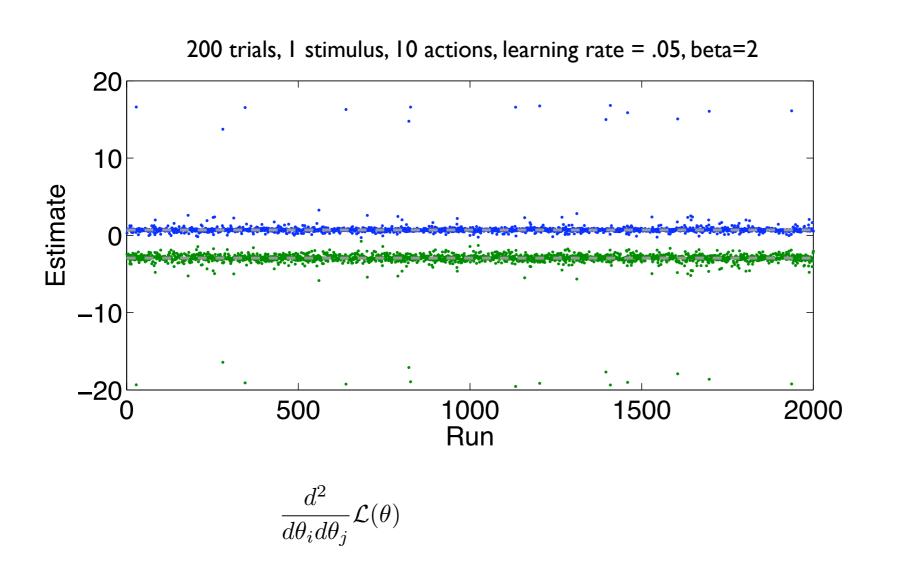
$$\frac{d \log \mathcal{L}(\theta')}{d\theta'}$$

Avoid over/underflow

$$y(a) = \beta \mathcal{Q}(a)$$

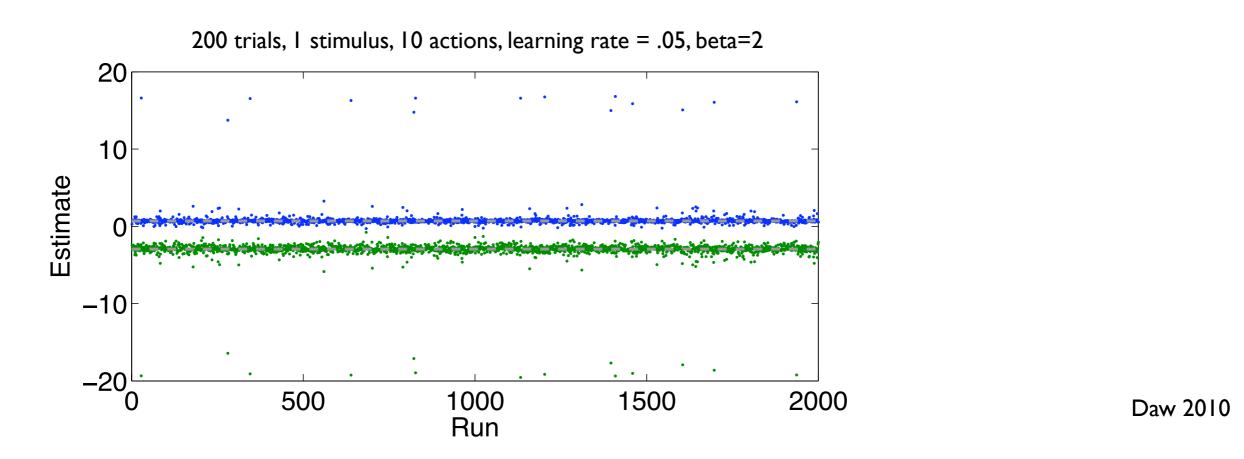
$$y_m = \max_a y(a)$$

$$p = \frac{e^{y(a)}}{\sum_b e^{y(b)}} = \frac{e^{y(a) - y_m}}{\sum_b e^{y(b) - y_m}}$$



Daw 2010

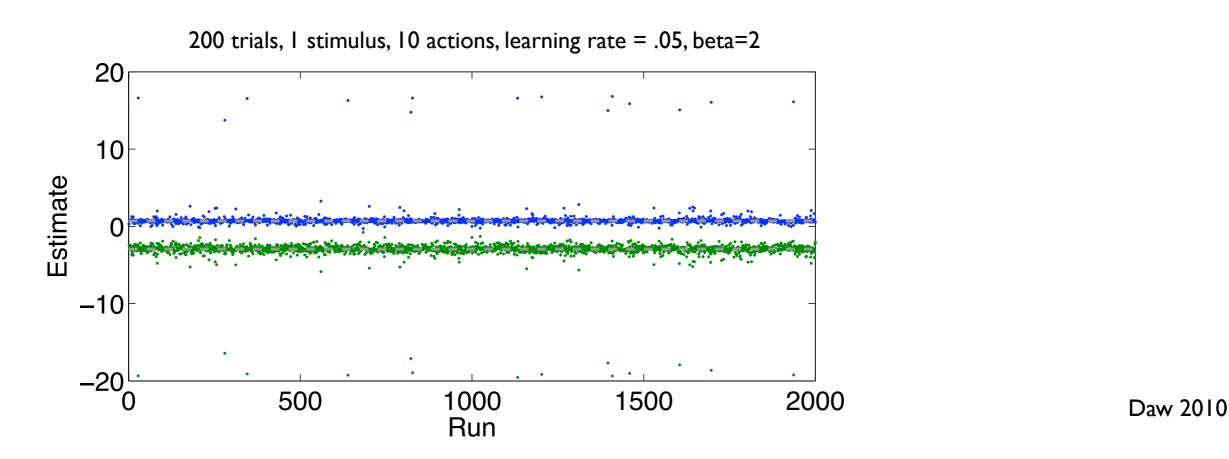
- ML is asymptotically consistent, but variance high
 - 10-armed bandit, infer beta and epsilon



Hessian $\frac{d^2}{d\theta_i d\theta_j} \mathcal{L}(\theta)$ can be used to derive confidence intervals and identify poorly constrained estimates

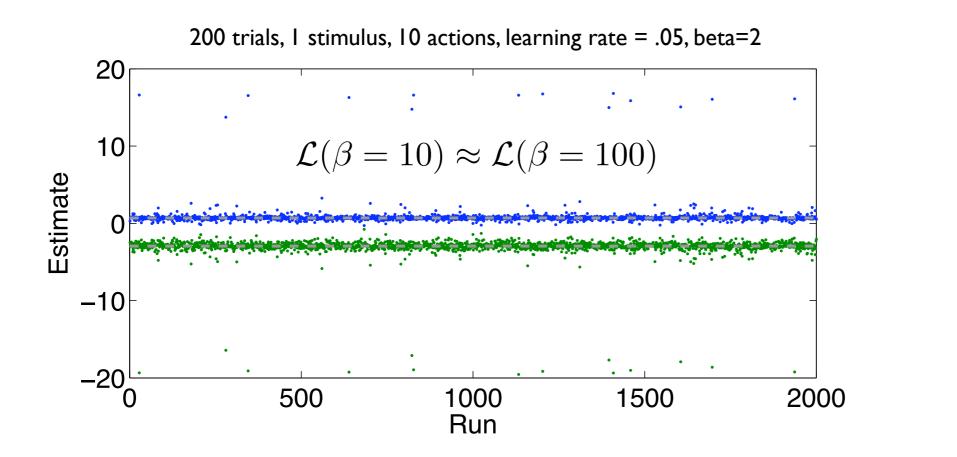
Schloss Ringberg 17.9.2012 Quentin Huys, TNU/PU Behavioural data modelling

- ▶ ML is asymptotically consistent, but variance high
 - I0-armed bandit, infer beta and epsilon



- Hessian $\frac{d^2}{d\theta_i d\theta_j} \mathcal{L}(\theta)$ can be used to derive confidence intervals and identify poorly constrained estimates
- ▶ ML can overfit... more later

- ▶ ML is asymptotically consistent, but variance high
 - 10-armed bandit, infer beta and epsilon



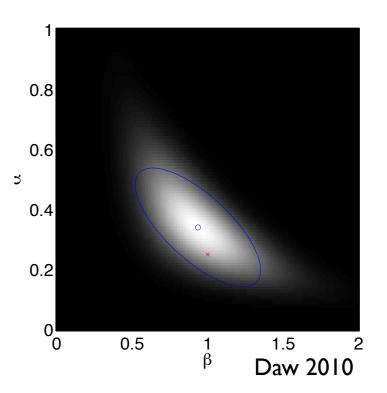
Daw 2010

- Hessian $\frac{d^2}{d\theta_i d\theta_j} \mathcal{L}(\theta)$ can be used to derive confidence intervals and identify poorly constrained estimates
- ▶ ML can overfit... more later

- ▶ ML is asymptotically consistent, but variance high
 - I0-armed bandit, infer beta and epsilon

200 trials, I stimulus, I0 actions, learning rate = .05, beta=2 $\mathcal{L}(\beta=10) \approx \mathcal{L}(\beta=100)$

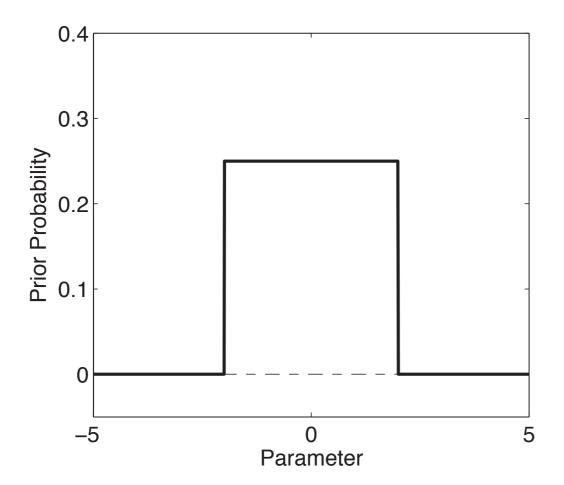
beta and epsilon can trade off



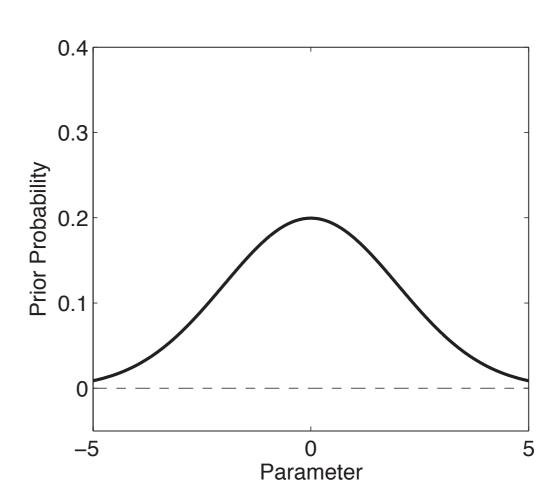
- Hessian $\frac{d^2}{d\theta_i d\theta_j} \mathcal{L}(\theta)$ can be used to derive confidence intervals and identify poorly constrained estimates
- ▶ ML can overfit... more later

Priors

Not so smooth

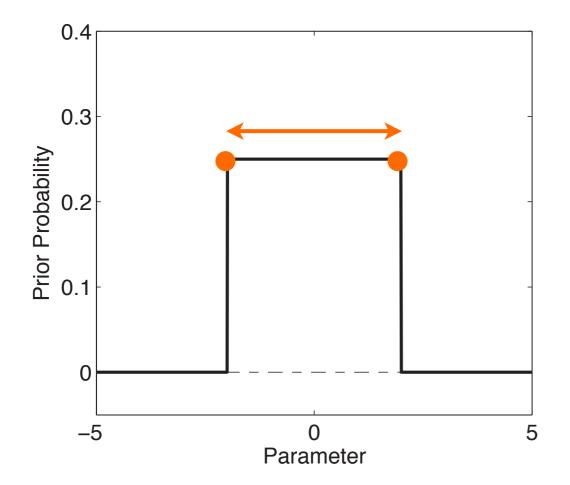


Smooth

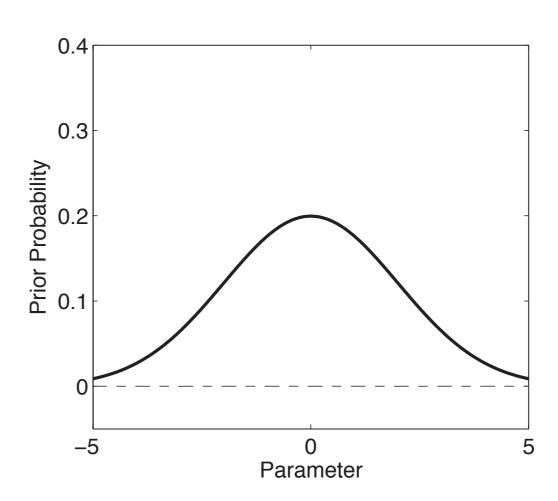


Priors

Not so smooth



Smooth



Priors

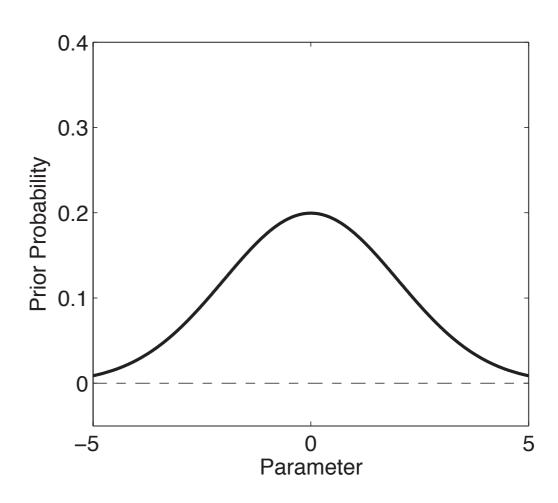
Not so smooth

0.4 0.3 Prior Probability 0.0 7.0 0 0 -5 Parameter 0.8 0.6 0.4 0.2

0.0

Switches Dombrovski et al. 2010

Smooth



Schloss Ringberg 17.9.2012 Quentin Huys, TNU/PUK Behavioural data modelling

Maximum a posteriori estimate

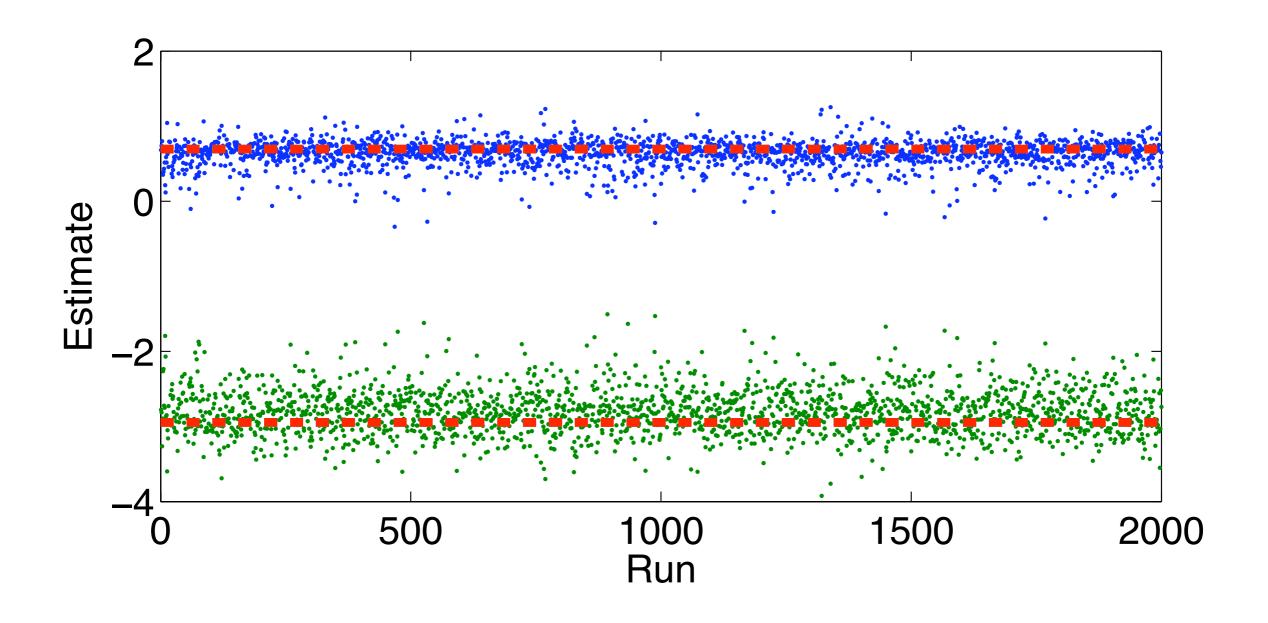
$$\mathcal{P}(\theta) = p(\theta|a_{1...T}) = \frac{p(a_{1...T}|\theta)p(\theta)}{\int d\theta p(\theta|a_{1...T})p(\theta)}$$

$$\log \mathcal{P}(\theta) = \sum_{t=1}^{T} \log p(a_t | \theta) + \log p(\theta) + const.$$

$$\frac{\log \mathcal{P}(\theta)}{d\alpha} = \frac{\log \mathcal{L}(\theta)}{d\alpha} + \frac{d p(\theta)}{d\theta}$$

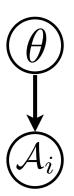
- If likelihood is strong, prior will have little effect
 - mainly has influence on poorly constrained parameters
 - if a parameter is strongly constrained to be outside the typical range of the prior, then it will win over the prior

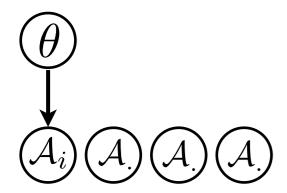
Maximum a posteriori estimate

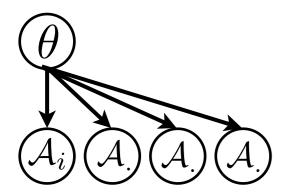


200 trials, I stimulus, I0 actions, learning rate = .05, beta=2 m_{beta} =0, m_{eps} =-3, n=I

What prior parameters should I use?

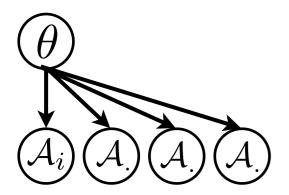






Fixed effect

conflates within- and between- subject variability

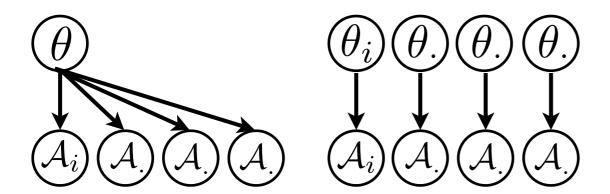


Fixed effect

conflates within- and between- subject variability

Average behaviour

- disregards between-subject variability
- need to adapt model



Fixed effect

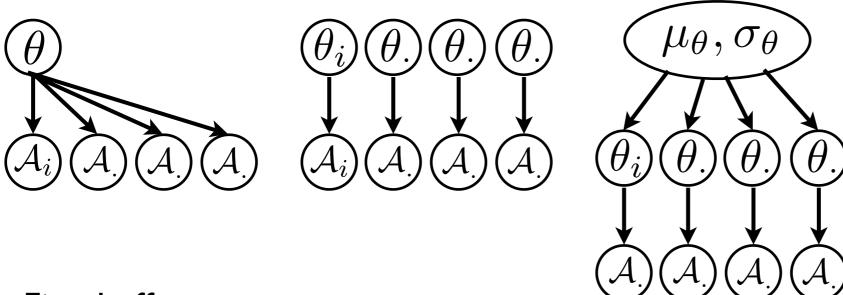
conflates within- and between- subject variability

Average behaviour

- disregards between-subject variability
- need to adapt model

Summary statistic

- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy



Fixed effect

conflates within- and between- subject variability

Average behaviour

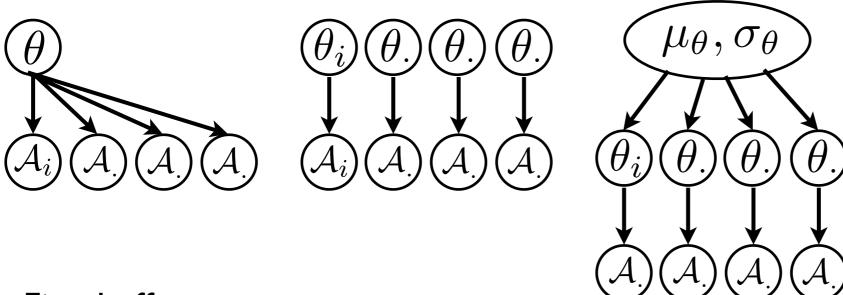
- disregards between-subject variability
- need to adapt model

Summary statistic

- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy

Random effects

prior mean = group mean



Fixed effect

conflates within- and between- subject variability

Average behaviour

- disregards between-subject variability
- need to adapt model

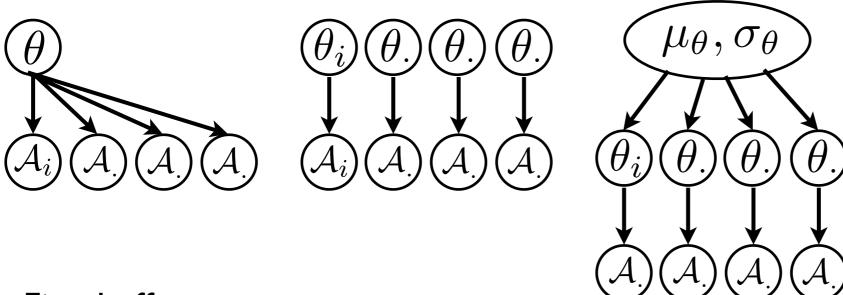
Summary statistic

- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy

Random effects

prior mean = group mean

$$p(\mathcal{A}_i|\mu_{\theta},\sigma_{\theta}) = \int d\theta_i \, p(\mathcal{A}_i|\theta_i) \, p(\theta_i|\mu_{\theta},\sigma_{\theta})$$



Fixed effect

conflates within- and between- subject variability

Average behaviour

- disregards between-subject variability
- need to adapt model

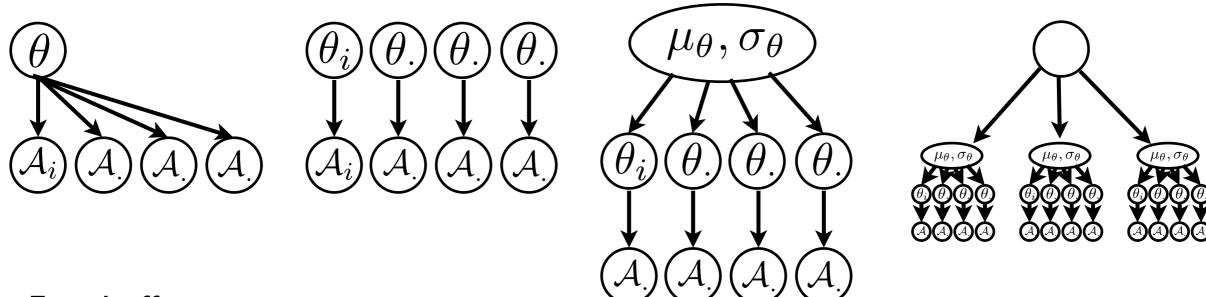
Summary statistic

- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy

Random effects

prior mean = group mean

$$p(\mathcal{A}_i|\mu_{\theta},\sigma_{\theta}) = \int d\theta_i \, p(\mathcal{A}_i|\theta_i) \, p(\theta_i|\underbrace{\mu_{\theta},\sigma_{\theta}})$$



- Fixed effect
 - conflates within- and between- subject variability
- Average behaviour
 - disregards between-subject variability
 - need to adapt model
- Summary statistic
 - treat parameters as random variable, one for each subject
 - overestimates group variance as ML estimates noisy
- Random effects
 - prior mean = group mean

$$p(\mathcal{A}_i|\mu_{\theta},\sigma_{\theta}) = \int d\theta_i \, p(\mathcal{A}_i|\theta_i) \, p(\theta_i|\underbrace{\mu_{\theta},\sigma_{\theta}})$$

Estimating the hyperparameters

MAP

$$\log \mathcal{P}(\theta) = \mathcal{L}(\theta) + \log \underbrace{p(\theta)}_{=p(\theta|\zeta)} + const.$$

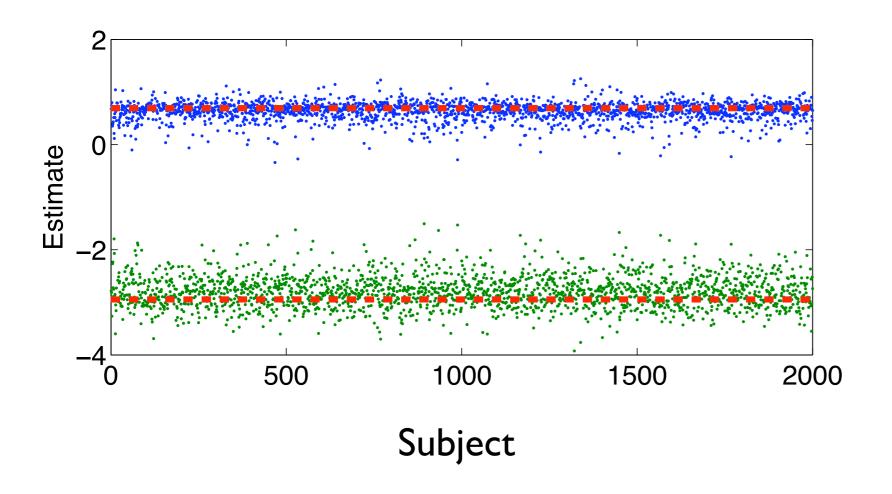
▶ Empirical Bayes: set them to ML estimate

$$\hat{\zeta} = \underset{\zeta}{\operatorname{argmax}} p(\mathcal{A}|\zeta)$$

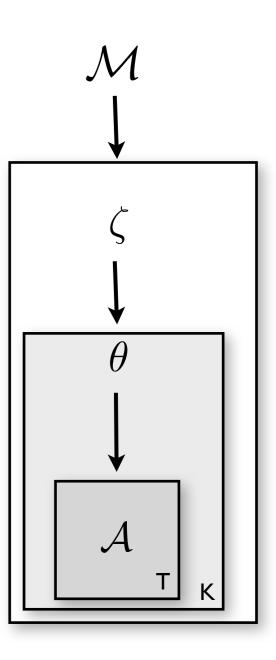
where we use all the actions by all the k subjects

$$\mathcal{A} = \{a_{1...T}^k\}_{k=1}^K$$

ML estimate of top-level parameters



$$\hat{\zeta} = \underset{\zeta}{\operatorname{argmax}} p(\mathcal{A}|\zeta)$$



Estimating the hyperparameters

Effectively we now want to do gradient ascent on:

$$\frac{d}{d\zeta}p(\mathcal{A}|\zeta)$$

But this contains an integral over individual parameters:

$$p(\mathcal{A}|\zeta) = \int d\theta p(\mathcal{A}|\theta) p(\theta|\zeta)$$

So we need to:

$$\hat{\zeta} = \underset{\zeta}{\operatorname{argmax}} p(\mathcal{A}|\zeta)$$

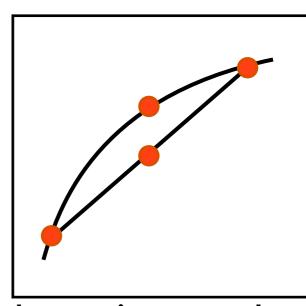
$$= \underset{\zeta}{\operatorname{argmax}} \int d\theta p(\mathcal{A}|\theta) p(\theta|\zeta)$$

Expectation Maximisation

$$\log p(\mathcal{A}|\zeta) = \log \int d\theta \, p(\mathcal{A}, \theta|\zeta)$$

$$= \log \int d\theta \, q(\theta) \frac{p(\mathcal{A}, \theta|\zeta)}{q(\theta)}$$

$$\geq \int d\theta \, q(\theta) \log \frac{p(\mathcal{A}, \theta|\zeta)}{q(\theta)}$$



Jensen's inequality

$$k^{\text{th}} \text{ E step: } q^{(k+1)}(\theta) \leftarrow p(\theta|\mathcal{A}, \zeta^{(k)})$$

$$k^{\text{th}} \text{ M step: } \zeta^{(k+1)} \leftarrow \operatorname{argmax} \int d\theta \, q(\theta) \log p(\mathcal{A}, \theta|\zeta)$$

There are other approaches

- Monte Carlo
- Analytical conjugate priors
- Variational Bayes

Iterate between

- Estimating MAP parameters given prior parameters
- Estimating prior parameters from MAP parameters

EM with Laplace approximation

- ▶ E step: $q^{(k+1)}(\theta) \leftarrow p(\theta|\mathcal{A}, \zeta^{(k)})$
 - only need sufficient statistics to perform M step
 - Approximate $p(\theta|\mathcal{A}, \zeta^{(k)}) \sim \mathcal{N}(\mathbf{m}_k, \mathbf{S}_k)$
 - and hence:

E step:
$$q_k(\theta) = \mathcal{N}(\mathbf{m}_k, \mathbf{S}_k)$$

$$\mathbf{m}_k \leftarrow \underset{\theta}{\operatorname{argmax}} p(\mathbf{a}_k | \theta) p(\theta | \zeta^{(i)})$$

$$\mathbf{S}_k^{-1} \leftarrow \frac{\partial^2 p(\mathbf{a}^k | \theta) p(\theta | \zeta^{(i)})}{\partial \theta^2} \Big|_{\theta = \mathbf{m}_k}$$
matlab: [m,L,,,S]=fminunc(...)

Just what we had before: MAP inference given some prior parameters

EM with Laplace approximation

Next update the prior

Prior mean = mean of MAP estimates

into account

M step:
$$\zeta_{\mu}^{(i+1)} = \frac{1}{K} \sum_{k} \mathbf{m}_{k}$$

$$\zeta_{\nu^{2}}^{(i+1)} = \frac{1}{N} \sum_{i} \left[(\mathbf{m}_{k})^{2} + \mathbf{S}_{k} \right] - (\zeta_{\mu}^{(i+1)})^{2}$$
Take uncertainty of estimates

Prior variance depends on inverse Hessian S and variance of MAP estimates

And now iterate until convergence

Hierarchical / random effects models

Advantages

- Accurate group-level mean and variance
- Outliers due to weak likelihood are regularized
- Strong outliers are not
- Useful for model selection

Disadvantages

- Individual estimates θ_i depend on other data, i.e. on $\mathcal{A}_{j\neq i}$ and therefore need to be careful in interpreting these as summary statistics
- Error bars on group parameters (especially group variance) are difficult to obtain
- More involved; less transparent

Link functions

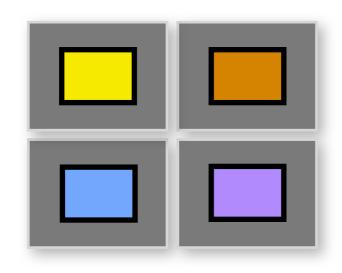
(a) 0.5 (b) 0.5 (c) 0.5 (d) 0.5 (e) 0.5 (e) 0.5

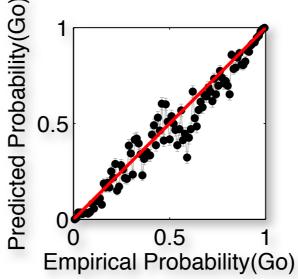
• Sigmoid
$$p(a|s) = \frac{e^{\beta \mathcal{Q}(a,s)}}{\sum_{a'} e^{\beta \mathcal{Q}(a',s)}}$$

▶
$$\epsilon$$
 - greedy $p(a|s) = \begin{cases} c & \text{if } a = \operatorname{argmax}_a \mathcal{Q}(a, s) \\ \frac{1-c}{|a|-1} & \text{else} \end{cases}$

irreducible noise
$$p(a|s) = \frac{1-g}{2} + g \frac{e^{\beta \mathcal{Q}(a,s)}}{\sum_{a'} e^{\beta \mathcal{Q}(a',s)}}$$

critical sanity check I: reasonable link function?





other link functions for other observations

Model comparison

- A fit by itself is not meaningful
- Generative test
 - qualitative
- Comparisons
 - vs random
 - vs other model -> test specific hypotheses and isolate particular effects in a generative setting

Model fit: likelihood

- ▶ How well does the model do?
 - choice probabilities:

$$\mathbb{E}p(correct) = e^{\mathcal{L}(\hat{\theta})/K/T}$$

$$= e^{\log p(\mathcal{A}|\theta)/K/T}$$

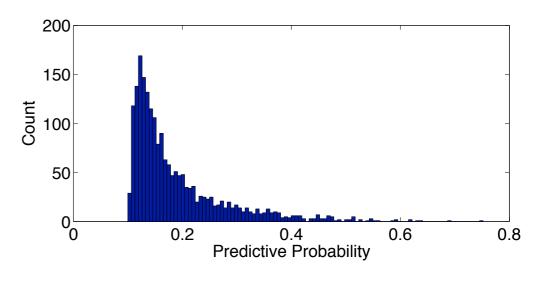
$$= \left(\prod_{k,t=1}^{K,T} p(a_{k,t}|\theta_k)\right)^{\frac{1}{KT}}$$

"Predictive probabilities" —

- typically around 0.65-0.75 for 2-way choice
- for I0-armed bandit example
- pseudo-r²: I-L/R
- better than chance?

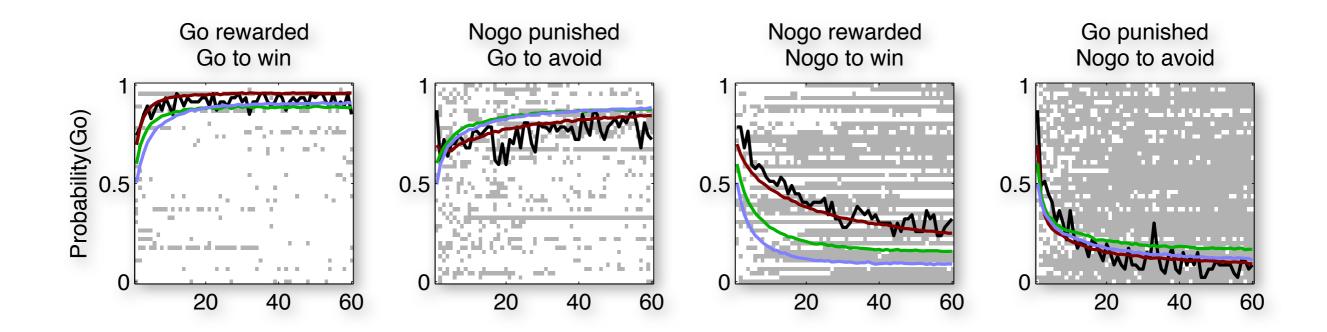
$$\mathbb{E}[N_k(correct)] = \mathbb{E}[p_k(correct)]T$$

$$p_{bin}(\mathbb{E}[N_k(correct)]|N_kd, p_0 = 0.5) < 1 - \alpha$$



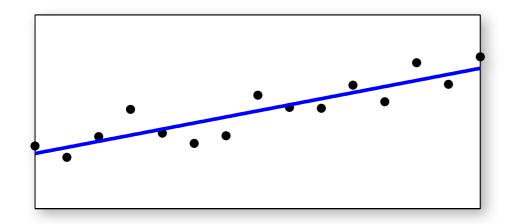
Generative test

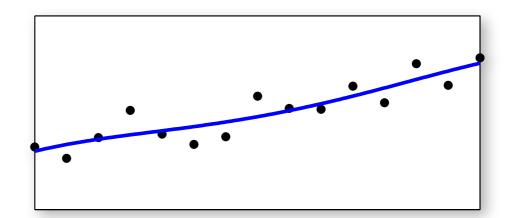
- Model: probability(actions)
 - simply draw from this distribution, and see what happens

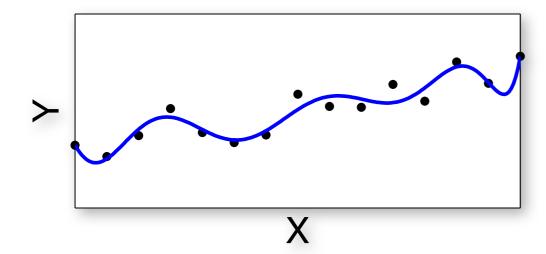


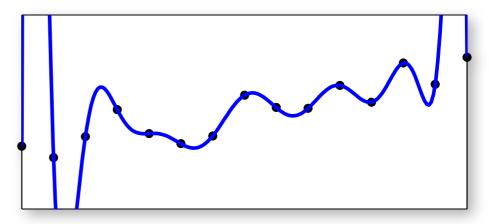
- Critical sanity test: is the model meaningful?
- Caveat: overfitting

Overfitting

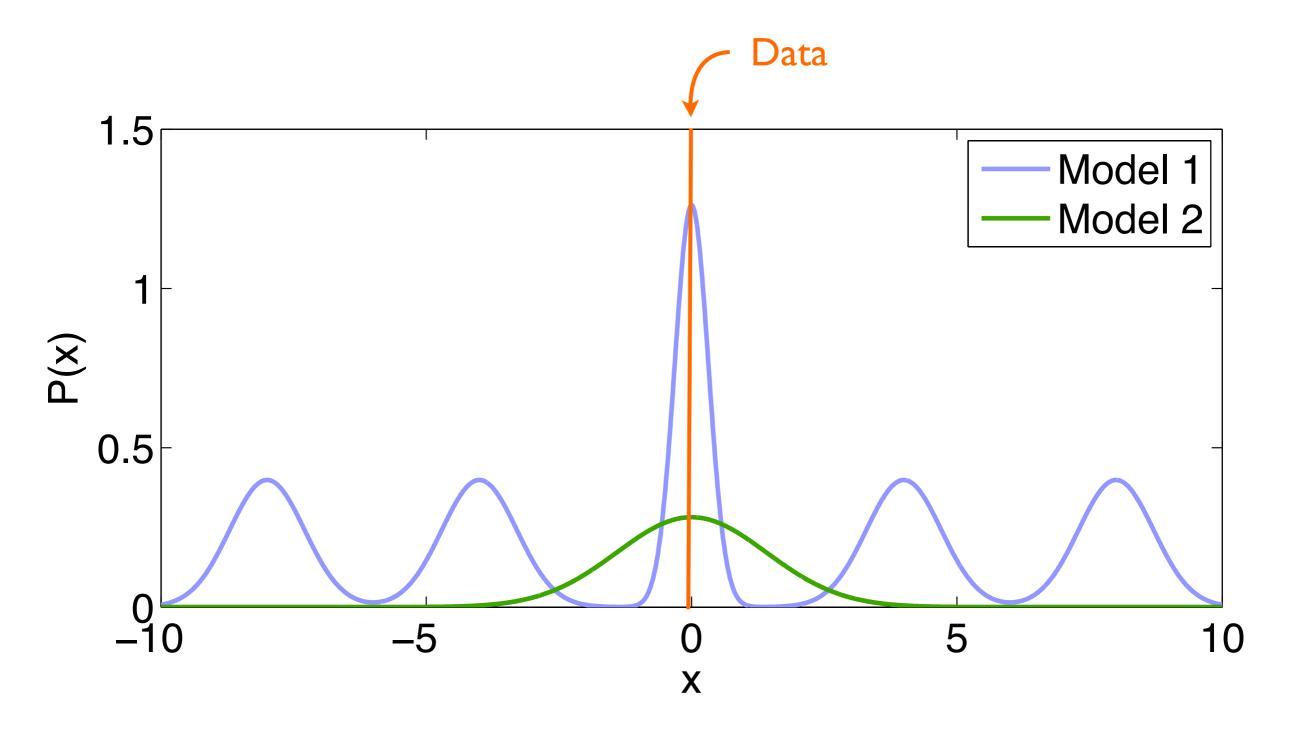








Model comparison



Model comparison

Averaged over its parameter settings, how well does the model fit the data?

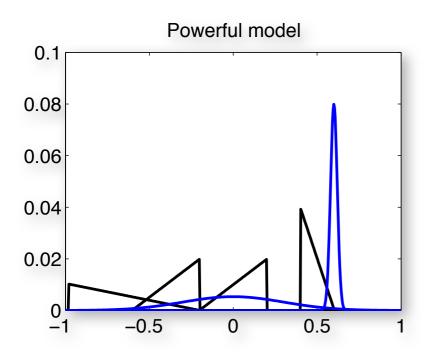
$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta) \, p(\theta|\mathcal{M})$$

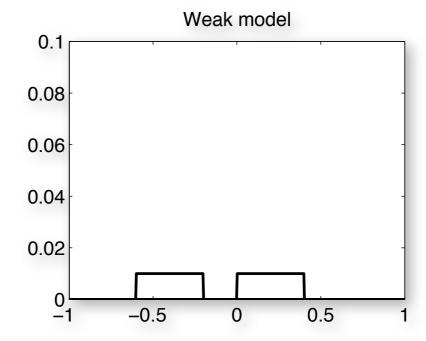
Model comparison: Bayes factors

$$BF = \frac{p(\mathcal{M}_1|\mathcal{A})}{p(\mathcal{M}_0|\mathcal{A})} = \frac{p(\mathcal{A}|\mathcal{M}_1) p(\mathcal{M}_1)}{p(\mathcal{A}|\mathcal{M}_2) p(\mathcal{M}_2)}$$

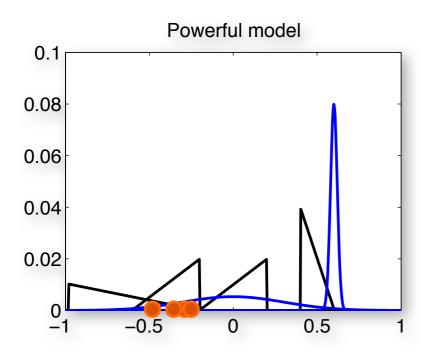
- Problem:
 - integral rarely solvable
 - approximation: Laplace, sampling, variational...

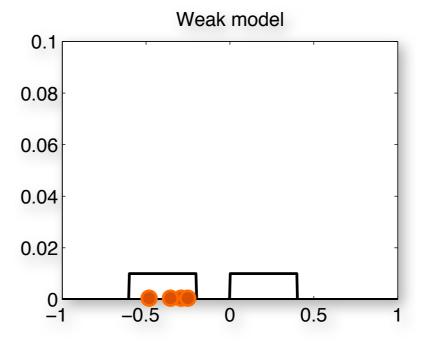
Why integrals? The God Almighty test



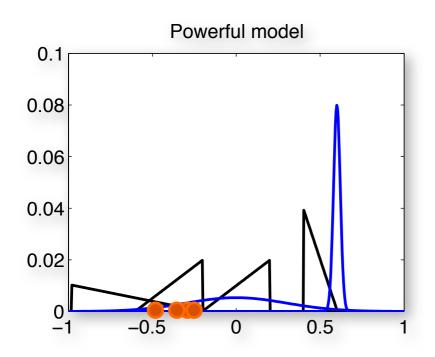


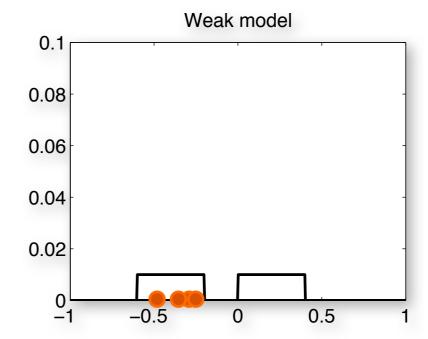
Why integrals? The God Almighty test





Why integrals? The God Almighty test

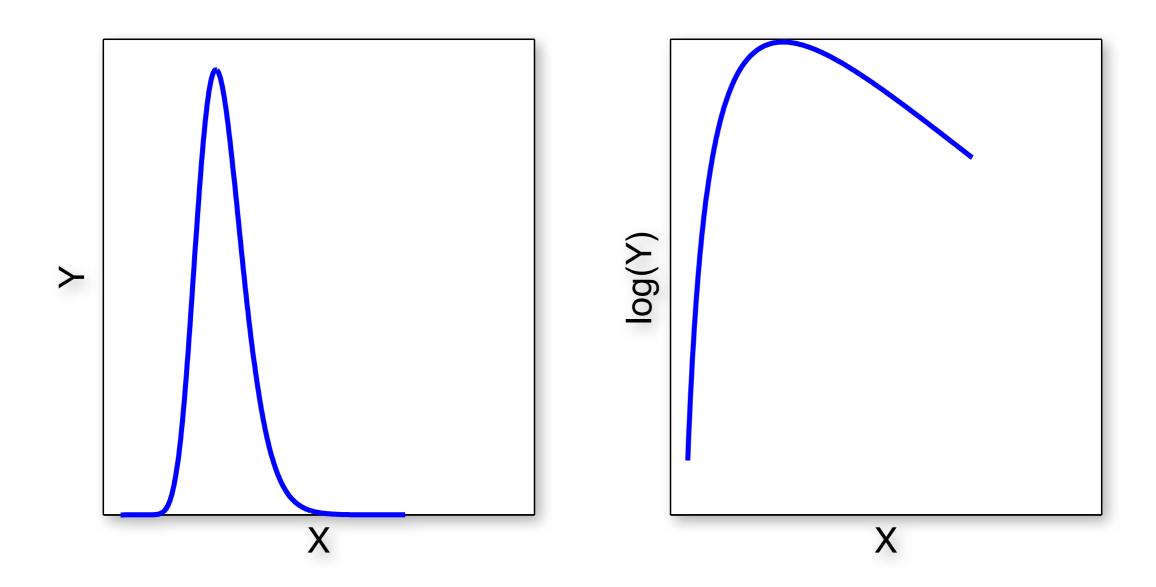




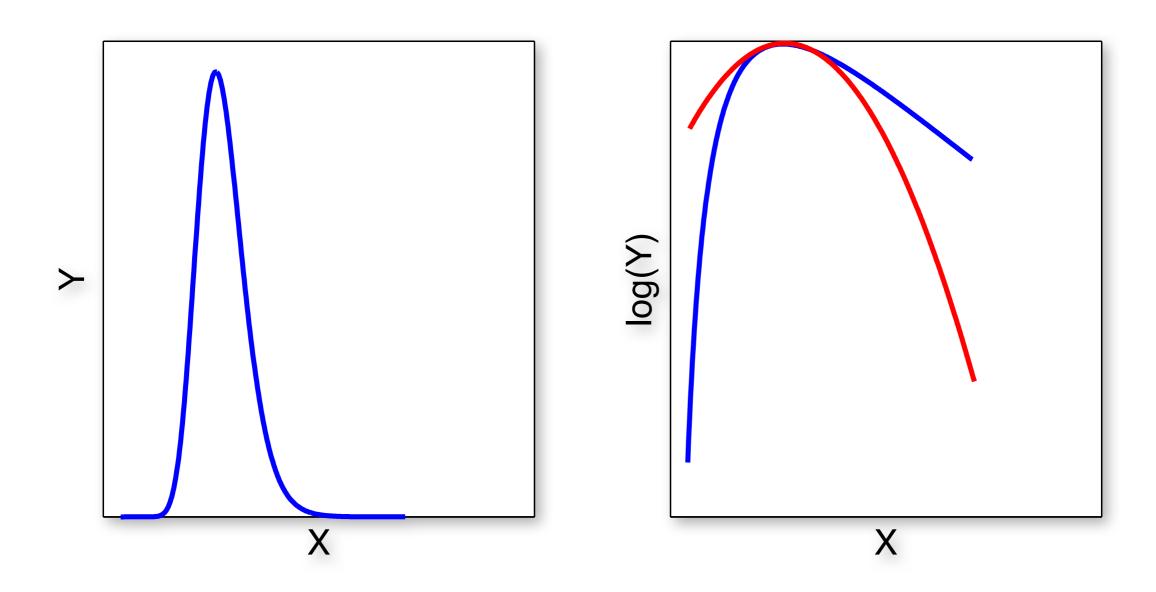
$$\frac{1}{N} (\mathbf{p}(\mathbf{X}|\boldsymbol{\theta_1}) + p(X|\boldsymbol{\theta_2}) + \cdots)$$

These two factors fight it out Model complexity vs model fit

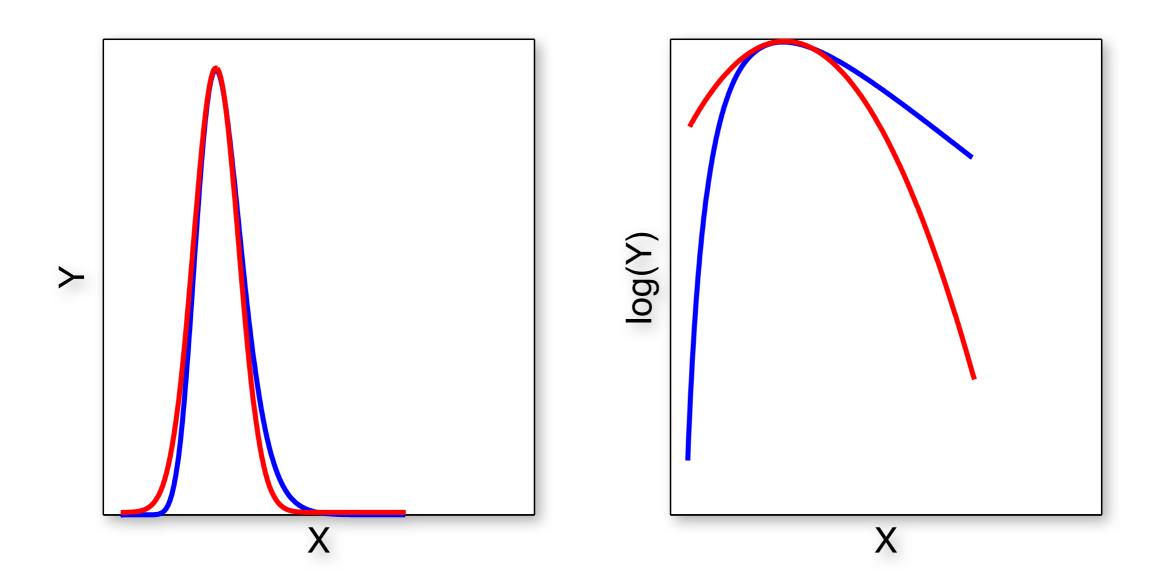
Laplace's approximation (saddle-point method)



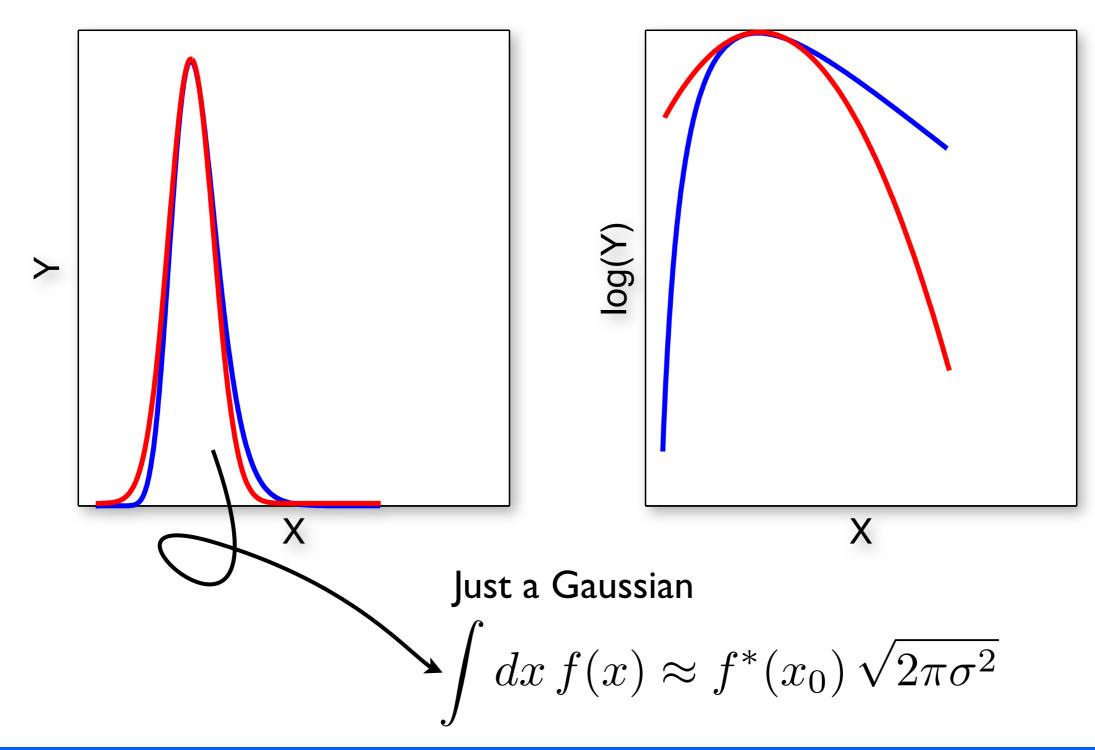
Laplace's approximation (saddle-point method)



Laplace's approximation (saddle-point method)



Laplace's approximation (saddle-point method)



$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, p(\theta|\mathcal{M})$$

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta,\mathcal{M}) \, \, p(\theta|\mathcal{M})$$
 is propto Gaussian

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, p(\theta|\mathcal{M})$$
 is propto Gaussian $p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, p(\theta|\mathcal{M})$ $\approx p(\mathcal{A}|\theta^{ML}, \mathcal{M}) p(\theta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta,\mathcal{M}) \, \, p(\theta|\mathcal{M})$$
 is propto Gaussian
$$p(\theta|\mathcal{M}) = \sum_{\substack{p(\theta|\mathcal{M}) = \text{const.} \\ \text{Model doesn't prefer particular}}} p(\theta|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$

Schloss Ringberg 17.9.2012 Behavioural data modelling

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, p(\theta|\mathcal{M}) \qquad \text{is propto Gaussian}$$

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, p(\theta|\mathcal{M}) \qquad p(\theta|\mathcal{M}) \qquad p(\theta|\mathcal{M}) = \text{const.}$$
 Model doesn't prefer particular particular
$$p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\theta^{ML}, \mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

$$p(\mathcal{A}|\theta) \ p(\theta|\mathcal{M})$$
 is propto Gaussian
$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \ p(\mathcal{A}|\theta,\mathcal{M}) \ p(\theta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\theta^{ML},\mathcal{M}) p(\theta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$
 Model doesn't prefer particular particular
$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\theta^{ML},\mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

$$p(\mathcal{A}|\theta) \ p(\theta|\mathcal{M})$$
 is propto Gaussian
$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \ p(\mathcal{A}|\theta,\mathcal{M}) \ p(\theta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\theta^{ML},\mathcal{M}) p(\theta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$
 Model doesn't prefer particular particular
$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\theta^{ML},\mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

$$\Sigma_{ii} \propto \frac{1}{T} \Rightarrow \frac{1}{2} \log(|\Sigma|) \approx -\frac{N}{2} \log(T)$$
 Bayesian Information Criterion (BIC) $\approx -N$ Akaike Information Criterion (AIC)

$$p(\mathcal{A}|\theta) \ p(\theta|\mathcal{M})$$
 is propto Gaussian
$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \ p(\mathcal{A}|\theta,\mathcal{M}) \ p(\theta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\theta^{ML},\mathcal{M})p(\theta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N|\Sigma|}$$
 Model doesn't prefer particular particular
$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\theta^{ML},\mathcal{M}) + \frac{1}{2}\log(|\Sigma|) + \frac{N}{2}\log(2\pi)$$

$$\Sigma_{ii} \propto \frac{1}{T} \Rightarrow \frac{1}{2} \log(|\Sigma|) \approx -\frac{N}{2} \log(T)$$
 Bayesian Information Criterion (BIC) $\approx -N$ Akaike Information Criterion (AIC)

Model fit vs Model complexity

Group data

- Multiple subjects
- Multiple models
 - do they use the same model? If not parameters are not comparable
 - which model best accounts for all of them?
- Multiple groups
 - difference in models?
 - difference in parameters?
 - 2^k possible model comparisons
- Multiple parameters
 - 2^k possible correlations with any one psychometric measure

Group data - approaches

- Summary statistic
 - Treat individual model comparison measure as summary statistics, do ANOVA or t-test
- Fixed effect analysis
 - Subject data independent

$$\log p(\mathcal{A}|\mathcal{M}) = \sum_{i} \log p(\mathcal{A}_{i}|\mathcal{M})$$

$$= \sum_{i} \log \int d\theta_{i} \, p(\mathcal{A}_{i}|\theta_{i}) p(\theta_{i}|\mathcal{M}_{i}) \approx -\frac{1}{2} \sum_{i} \mathsf{BIC}_{i}$$

- Random effects analyses
 - Hierarchical prior on group parameters

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \int d\theta \, p(\mathcal{A}|\theta) \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

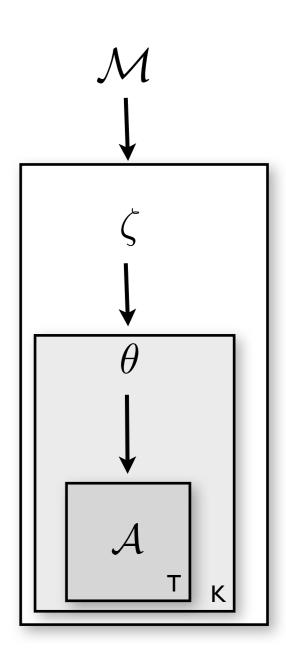
Hierarchical prior on models

$$p(\mathcal{A}, \mathcal{M}_k, r | \alpha) = p(\mathcal{A} | \mathcal{M}_k) p(\mathcal{M}_k | r) p(r | \alpha)$$

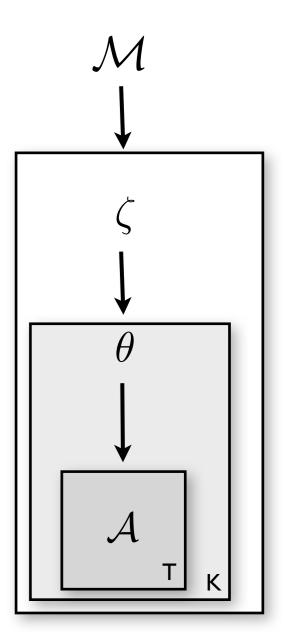
Group-level likelihood

- Contains two integrals:
 - subject parameters
 - prior parameters

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

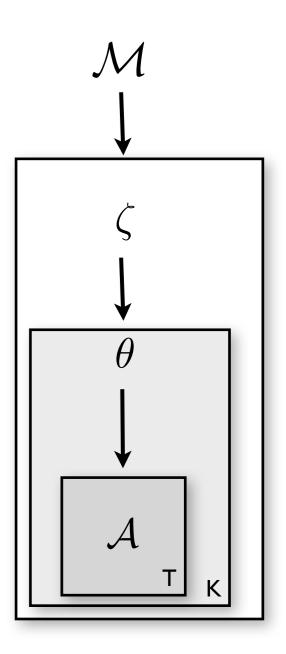


$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$



- Two integrals
 - tricky

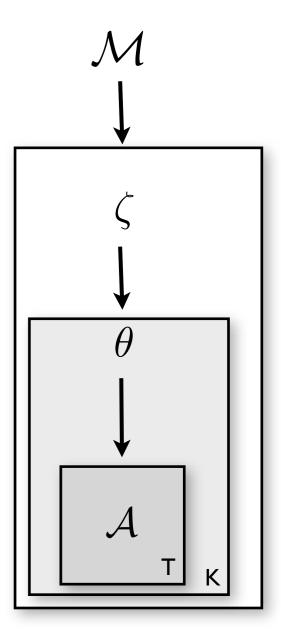
$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$



Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Top level first:

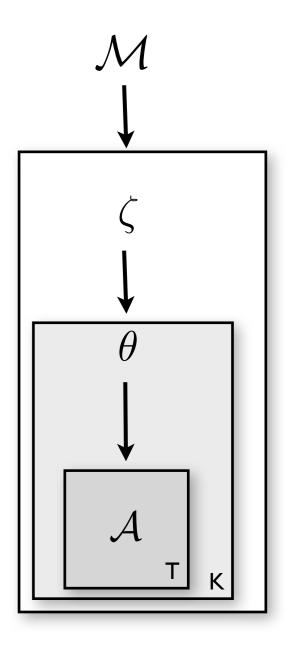


Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Top level first:

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M})$$



Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Approximate at the top level
 - less action

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M})$$

▶ Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Approximate at the top level
 - less action

 $p(\mathcal{A}|\zeta,\mathcal{M}) \ p(\zeta|\mathcal{M})$

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M})$$

Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Approximate at the top level
 - less action

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M})$$
 $\approx p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$

Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Approximate at the top level
 - less action

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta,\mathcal{M}) \, p(\zeta|\mathcal{M})$$
 is propto Gaussian
$$\approx p(\mathcal{A}|\zeta^{ML},\mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$
 Model doesn't prefer particular ζ

Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Approximate at the top level
 - less action

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta,\mathcal{M}) \, p(\zeta|\mathcal{M})$$
 is propto Gaussian
$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta,\mathcal{M}) \, p(\zeta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\zeta^{ML},\mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$
 Model doesn't prefer particular ζ
$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\zeta^{ML},\mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Approximate at the top level
 - less action

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta,\mathcal{M}) \, p(\zeta|\mathcal{M})$$
 is propto Gaussian
$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta,\mathcal{M}) \, p(\zeta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\zeta^{ML},\mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$

$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\zeta^{ML},\mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Approximate at the top level
 - less action

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta,\mathcal{M}) \, p(\zeta|\mathcal{M})$$
 is propto Gaussian
$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta,\mathcal{M}) \, p(\zeta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\zeta^{ML},\mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$

$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\zeta^{ML},\mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

just as before, top-level BIC

Approximating level I

- Still leaves the first level:
 - Approximate integral by sampling, e.g. importance sampling for few dimensions (<10)

$$\log p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) = \log \int d\theta \, p(\mathcal{A}|\theta) \, p(\theta|\zeta^{ML})$$

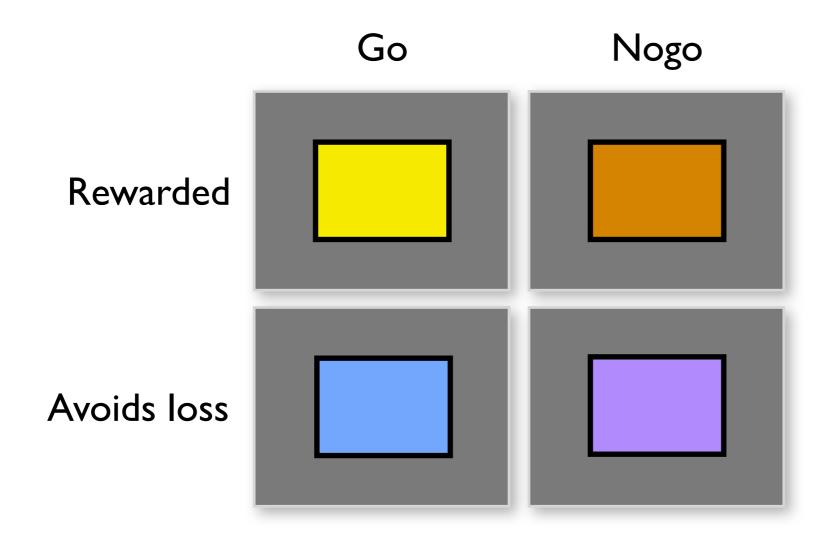
$$\approx \log \frac{1}{B} \sum_{b=1}^{B} p(\mathcal{A}|\theta^b)$$

$$\theta^b \sim p(\theta|\zeta^{ML})$$

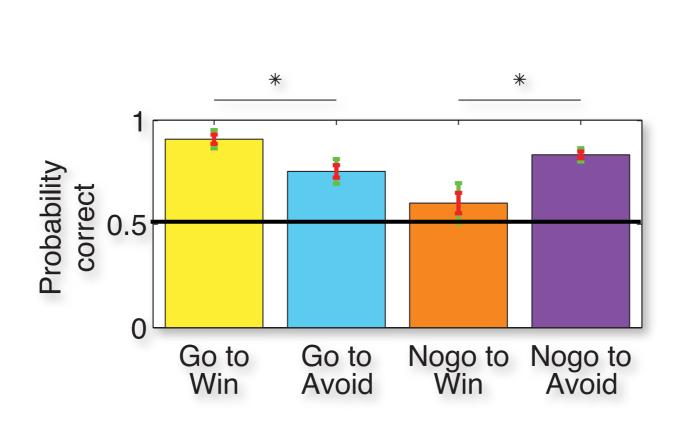
Group-level BIC

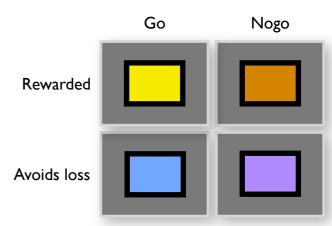
$$\begin{split} \log p(\mathcal{A}|\mathcal{M}) &= \int d\boldsymbol{\zeta} \, p(\mathcal{A}|\boldsymbol{\zeta}) \, p(\boldsymbol{\zeta}|\mathcal{M}) \\ &\approx -\frac{1}{2} \mathsf{BIC}_{\mathsf{int}} \\ &= \log \hat{p}(\mathcal{A}|\hat{\boldsymbol{\zeta}}^{ML}) - \frac{1}{2} |\mathcal{M}| \log(|\mathcal{A}|) \end{split}$$

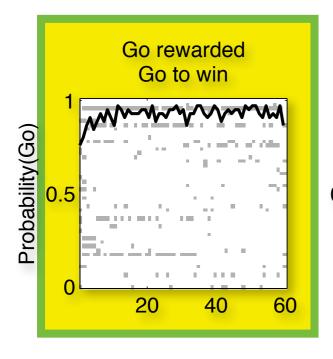
Example task

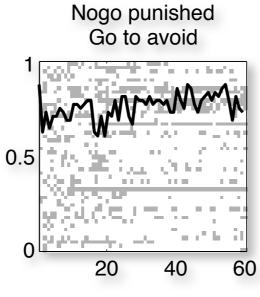


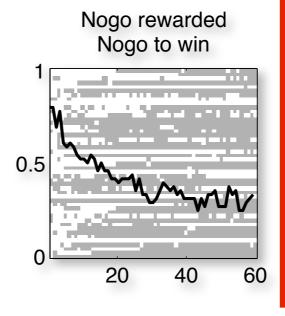
Example task

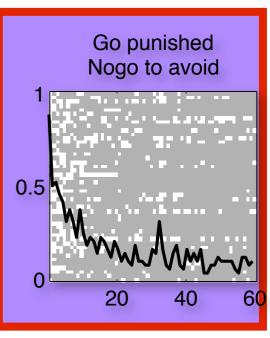






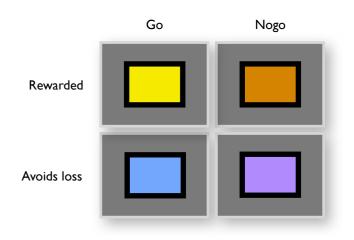


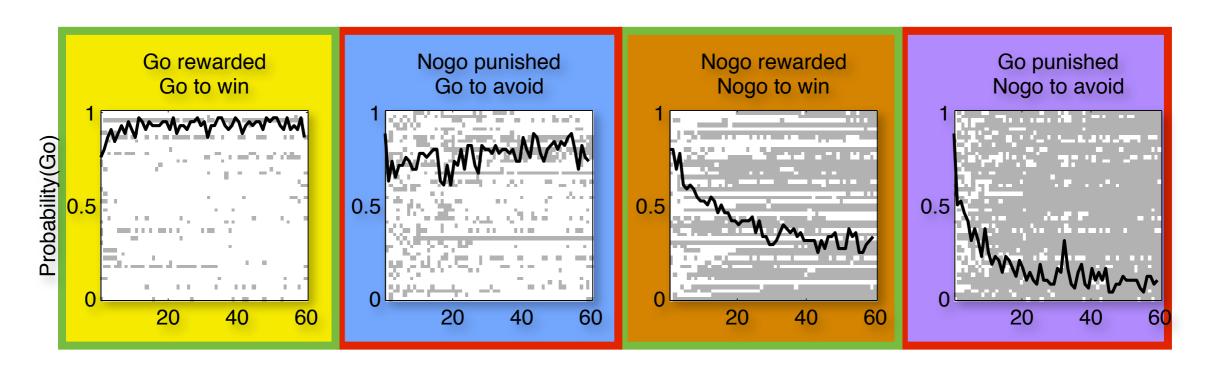




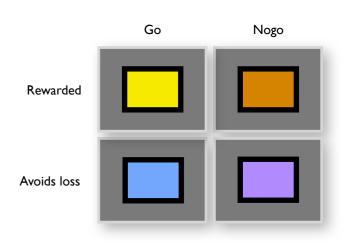
Guitart-Masip, Huys et al. Submitted

Quentin Huys, TNU/PUK Schloss Ringberg 17.9.2012 Behavioural data modelling

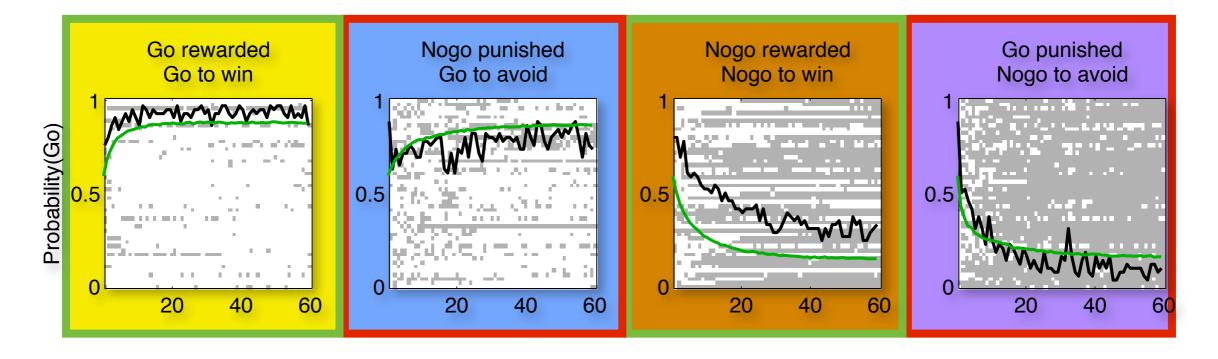




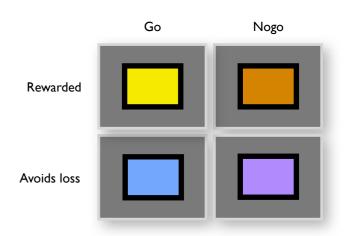
Guitart-Masip et al. 2011, Guitart-Masip, Huys et al. Submitted



$$p(\mathsf{go}|s_t) \propto \mathcal{Q}_t(\mathsf{go}|s_t) + \mathsf{bias}(\mathsf{go})$$

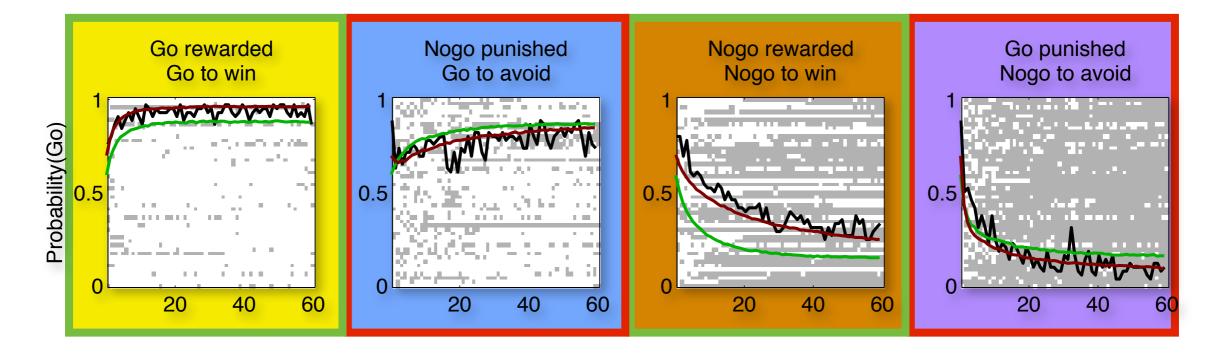


Guitart-Masip et al. 2011, Guitart-Masip, Huys et al. Submitted



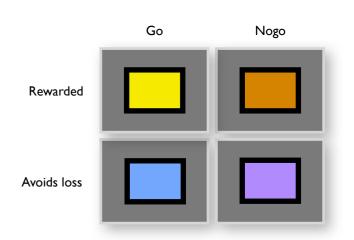
$$p(\mathsf{go}|s_t) \propto \mathcal{Q}_t(\mathsf{go}|s_t) + \mathsf{bias}(\mathsf{go}) + \mathcal{V}_t(s_t)$$

 $\mathcal{V}_t(s_t) = \mathcal{V}_{t-1}(s_t) + \epsilon(r_t - \mathcal{V}_{t-1}(s_t))$



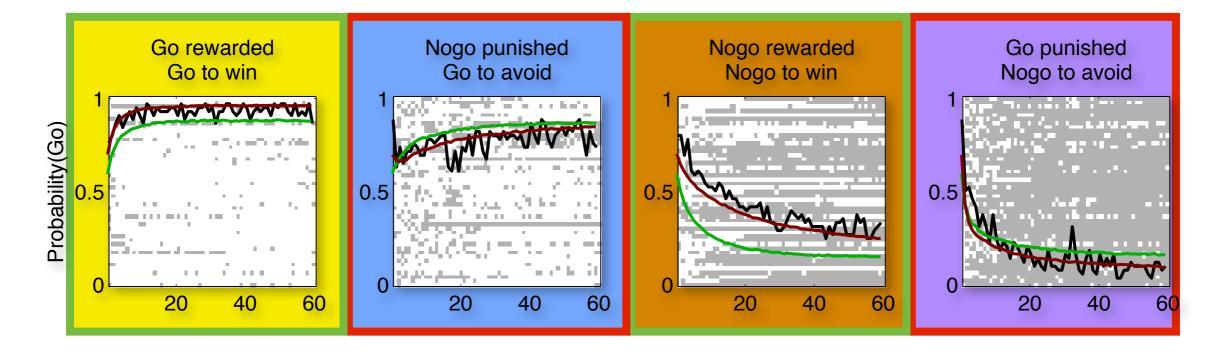
Guitart-Masip et al. 2011, Guitart-Masip, Huys et al. Submitted

 $P(go) \propto value of stimulus$

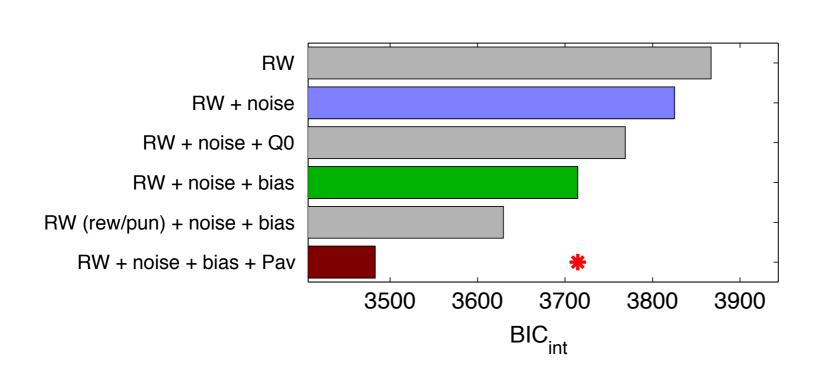


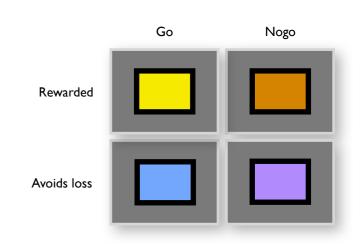
$$p(\mathsf{go}|s_t) \propto \mathcal{Q}_t(\mathsf{go}|s_t) + \mathsf{bias}(\mathsf{go}) + \mathcal{V}_t(s_t)$$

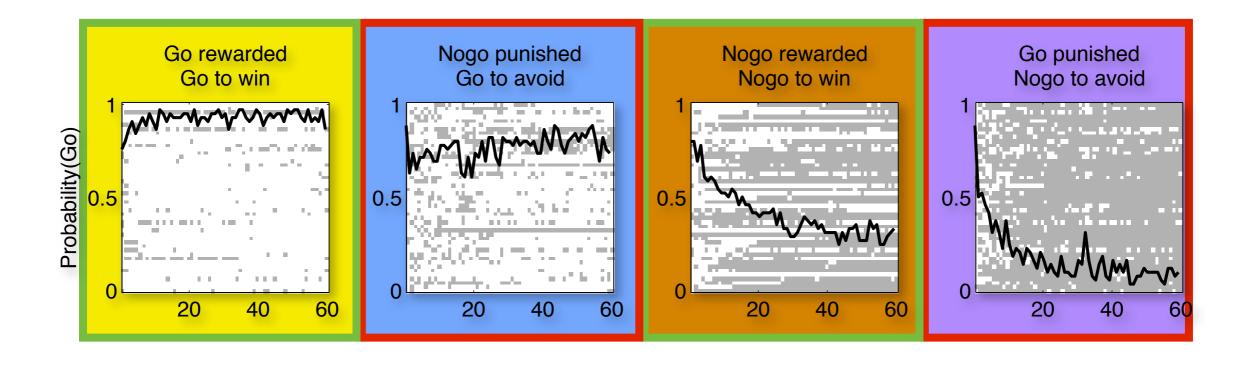
 $\mathcal{V}_t(s_t) = \mathcal{V}_{t-1}(s_t) + \epsilon(r_t - \mathcal{V}_{t-1}(s_t))$

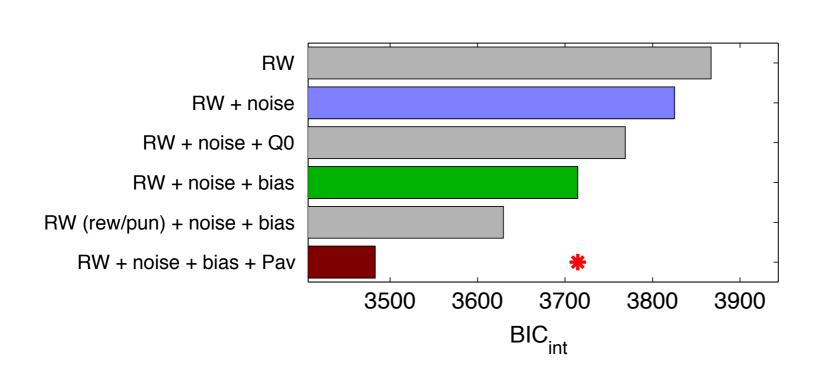


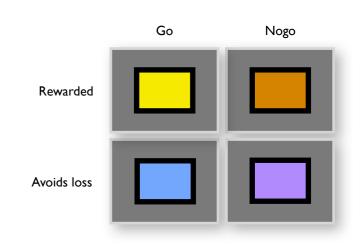
Guitart-Masip et al. 2011, Guitart-Masip, Huys et al. Submitted

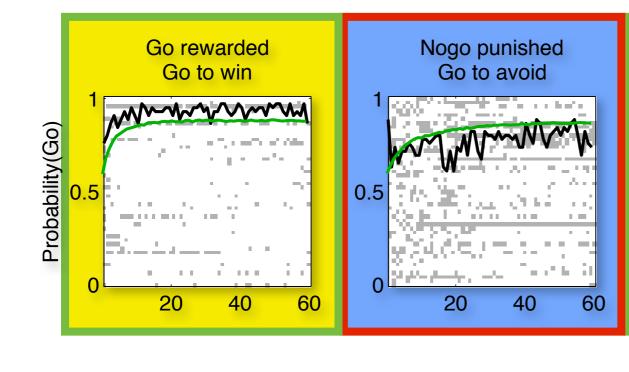


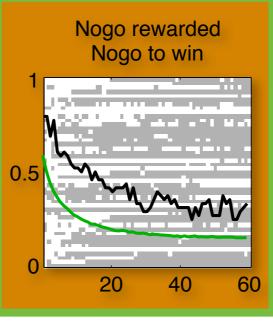


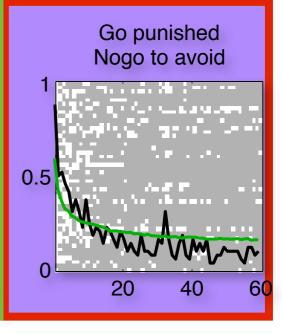


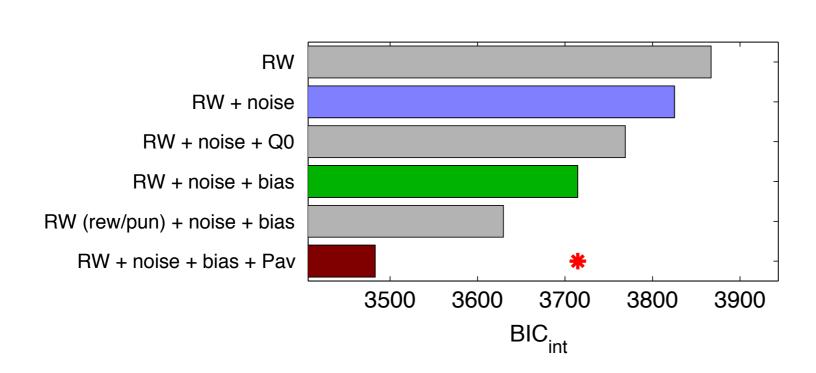


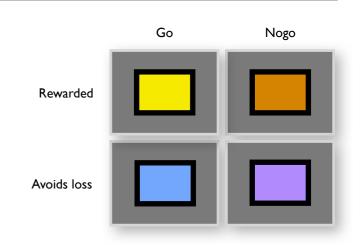


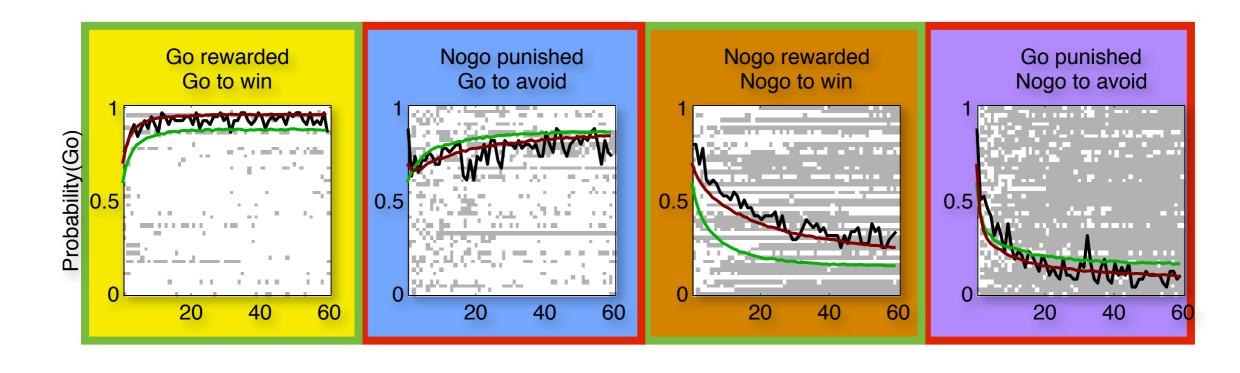


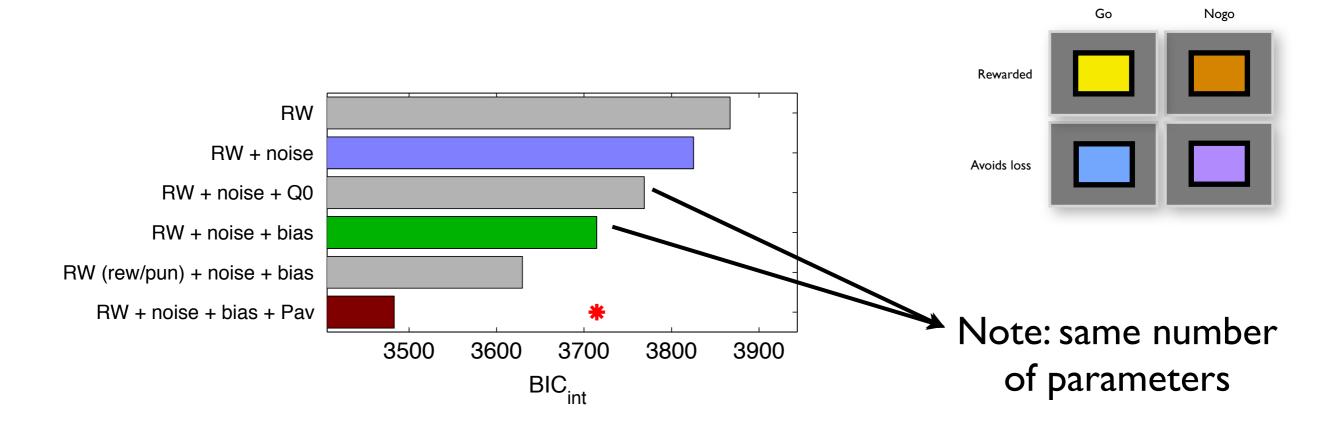


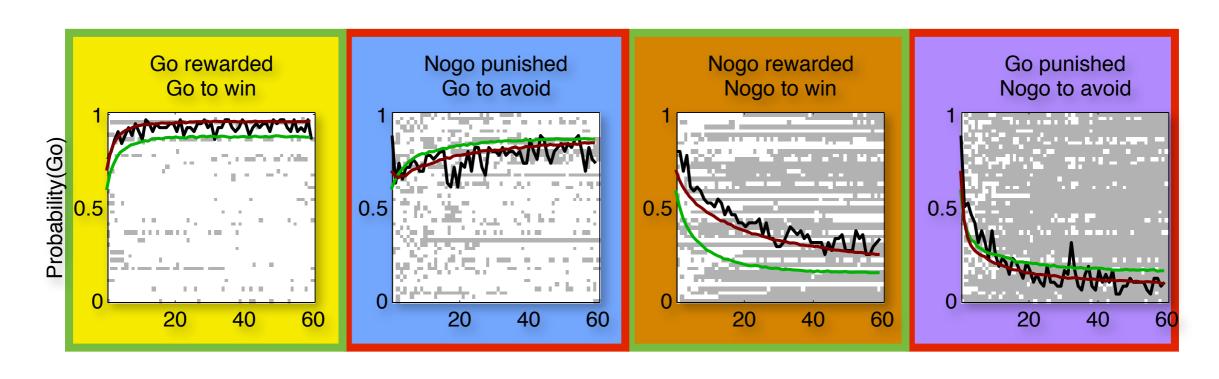






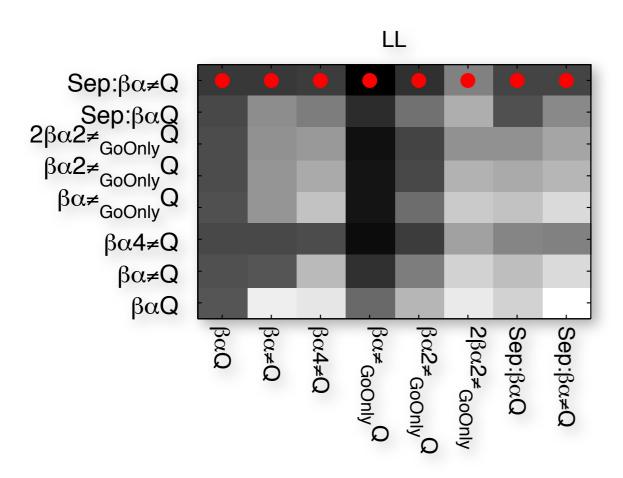


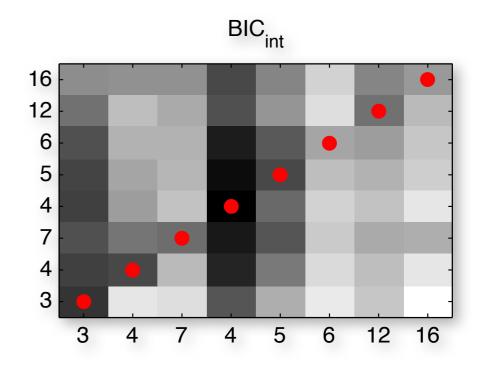


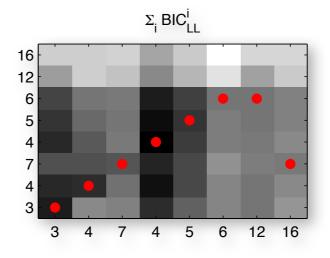


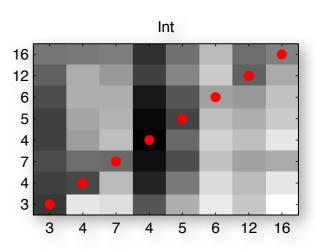
Schloss Ringberg 17.9.2012 Behavioural data modelling

How does it do?

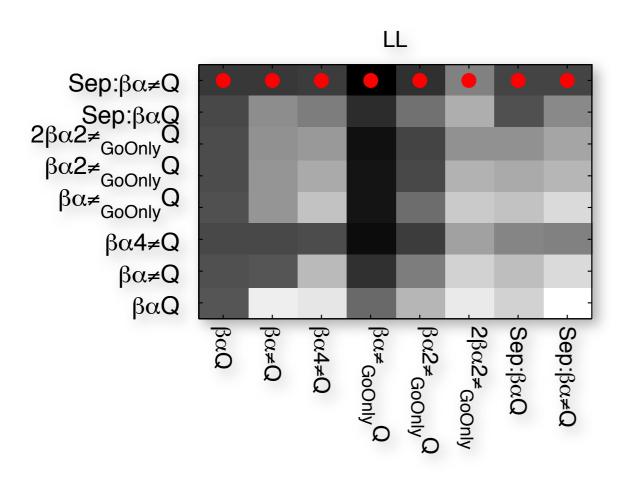


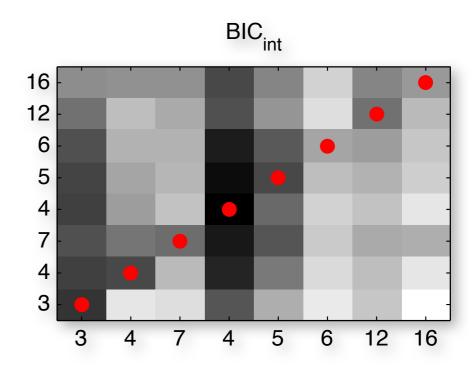


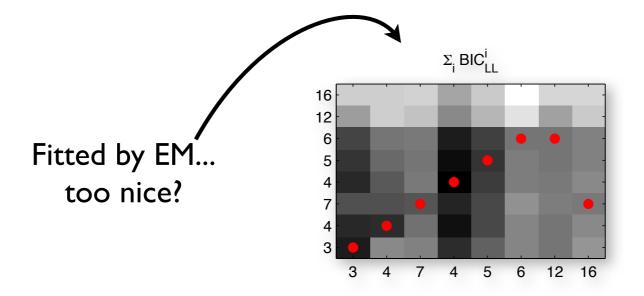


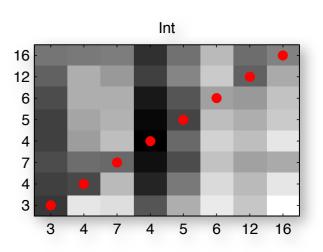


How does it do?









Top-level Laplacian approximation

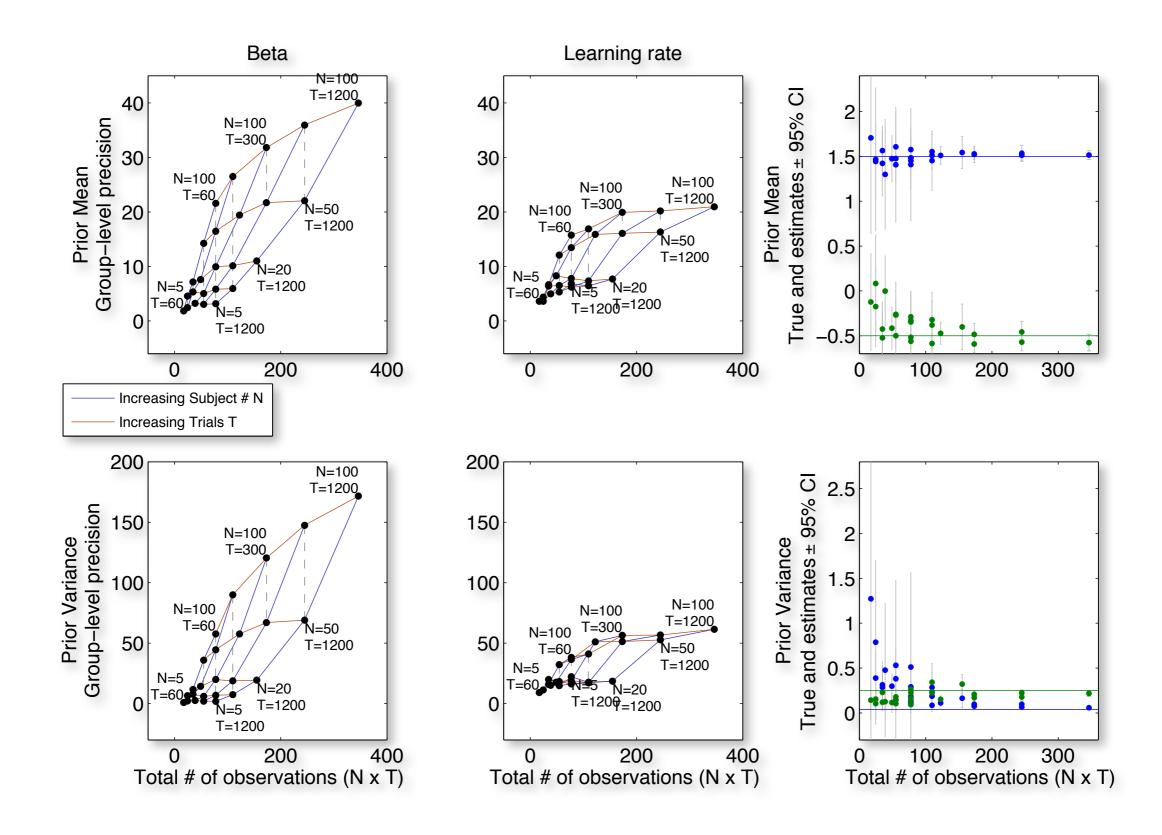
Estimating the top-level determinant

using 2nd order finite differences

$$\frac{d^2}{dh_{ij}^2} p(\mathcal{A}|\zeta) \bigg|_{\zeta = \hat{\zeta}^{ML}} \approx \frac{1}{\delta^2} \left[p(\mathcal{A}|\hat{\zeta}^{ML} + \delta \mathbf{e}_i) - 2p(\mathcal{A}|\hat{\zeta}^{ML}) + p(\mathcal{A}|\hat{\zeta}^{ML} - \delta \mathbf{e}_j) \right]$$

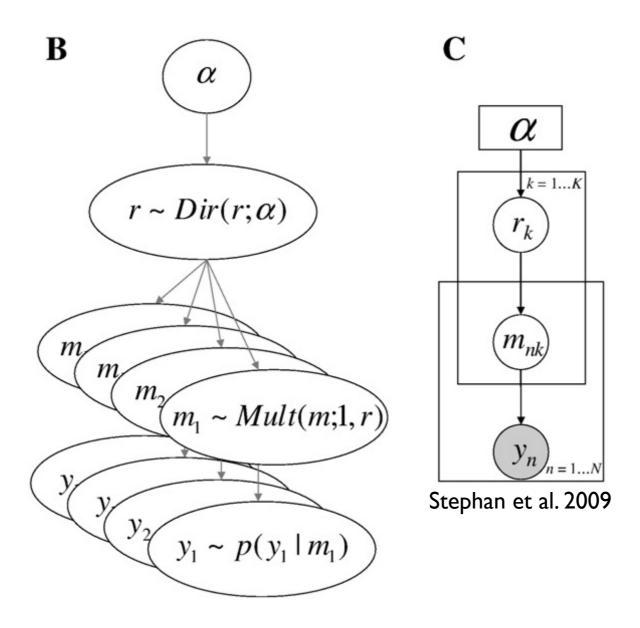
 the shifted likelihoods can be evaluated by shifting the samples.

Group level errors



Posterior distribution on models

Generative model for models



Bayesian model selection - equations

- Write down joint distribution of generative model
- Variational approximations lead to set of very simple update equations
 - start with flat prior over model probabilities

$$\alpha = \alpha_0$$

then update

$$u_k^i = \left(\int d\theta_i \, p(\mathcal{A}_i, \theta_i | \mathcal{M}_k)\right) \exp\left(\Psi(\alpha_k) - \Psi\left(\sum_k \alpha_k\right)\right)$$

$$\alpha_k \leftarrow \alpha_{0,k} + \sum_i \frac{u_k^i}{\sum_k u_k^i}$$

Group Model selection

Integrate out your parameters

Questions in psychiatry I: regression

- lacktriangle Parametric relationship with other variables ψ
 - do standard second level analyses
 - can use Hessians to determine weights

E step:
$$q_k(\theta) = \mathcal{N}(\mathbf{m}_k, \mathbf{S}_k)$$

$$\mathbf{m}_k \leftarrow \underset{\theta}{\operatorname{argmax}} p(\mathbf{a}_k | \theta) p(\theta | \zeta^{(i)})$$

$$\mathbf{S}_k^{-1} \leftarrow \frac{\partial^2 p(\mathbf{a}^k | \theta) p(\theta | \zeta^{(i)})}{\partial \theta^2} \Big|_{\theta = \mathbf{m}_k}$$

better: compare two models

Model 1:
$$\prod_{i} p(\mathcal{A}_{i}|\theta_{i}) p(\theta_{i}|\mu_{0}, \sigma)$$
i.e.
$$\theta_{i} \sim \mathcal{N}(\mu_{0}, \sigma)$$
Model 2:
$$\prod_{i} p(\mathcal{A}_{i}|\theta_{i}) p(\theta_{i}|\mu_{0}, c, \sigma, \psi_{i})$$
i.e.
$$\theta_{i} \sim \mathcal{N}(\mu_{0} + c\psi_{i}, \sigma)$$

Regression

Standard regression analysis:

$$\mathbf{m}_i = \mathbf{Cr}_i + \Sigma^{1/2} \boldsymbol{\eta} \qquad \forall i$$

Including uncertainty about each subject's inferred parameters

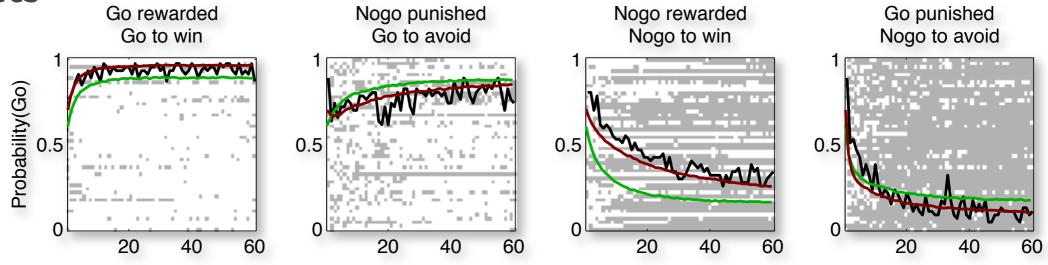
$$\mathbf{m}_i = \mathbf{Cr}_i + (\Sigma^{1/2} + \mathbf{S}_i^{1/2})\boldsymbol{\eta}$$
 $\forall i$

- Careful: Finite difference estimates S can be noisy!
 - regularize...

Questions in psychiatry II: group differences

- Do groups differ in terms of parameter(s)?
- Cannot compare parameters across different models

even very similar parameters can account for different effects



- For models with k parameters, there are 2^k possible comparisons
 - multiple comparisons?
 - posterior over models (Stephan et al. 2009)

Group differences in parameters

- Are two groups similar in parameter x?
- ANOVA: compare likelihood of two means to likelihood of one global mean. Take degrees of freedom into account.
- But: this tries to account for the parameters with one or two groups, not for the data
- Compare models with separate or joint parameter & prior:

Model 1	ω	β_1, β_2
Model 2	3	β

Questions in psychiatry III: Classification

- Who belongs to which of two groups?
- ▶ How many groups are there?

Model comparison again

What is 'significant'?

- "Spread of effect" in group comparisons
 - Better model does not mean a behavioural effect is concentrated in one parameter
 - Obvious raw differences spread between parameters

Behavioural data modelling

Are no panacea

- statistics about specific aspects of decision machinery
- only account for part of the variance

Model needs to match experiment

- ensure subjects actually do the task the way you wrote it in the model
- model comparison

Model = Quantitative hypothesis

- strong test
- need to compare models, not parameters
- includes all consequences of a hypothesis for choice

Modelling in psychiatry

- Hypothesis testing
 - otherwise untestable hypotheses
 - internal processes
- Limited by data quality
 - Look for strong behaviours, not noisy
- "Holistic" testing of hypotheses
- Marr's levels
 - physical
 - algorithm
 - computational