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learning for decisions

multiple systems for trial-and-error decision making:
habits, slips of action, control, & compulsion

1. characterizing this distinction computationally via different
learning strategies: model-based and model-free RL

2. individual variation in these mechanisms: eg. are they
compromised in psychiatric disorders?



model-based learning
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“model-based” learning:
* |earn one-step rewards & transitions;
* iterative, tree-structured computation




“model-free” learning
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shortcut: cache endpoints of computation (long-run action values)
A/ \B » simplifies choice-time computation (just retrieve)
* these can be learned directly (TD learning)
$10 $25 e standardtheory of dopamine, reward prediction errors etc
* intermediates(e.g. partial evaluation)
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Regression coefficient

model-free reinforcement
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(Parker, ..., Daw & Witten, Nature Neuroscience 2016)



model-based learning

decision behaviorand neural decision variables incorporate knowledge other than
reinforcement history; integrate over separate experiences

revaluation _ replanning
A. Instrumental learning  B. Revaluation C. Choice test :
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Issues

1) Can we study this tradeoff with more
targeted experimental designs?

2) What is the mechanism of model-based
evaluation?

3) How do these mechanism vary across
individuals? Is there a relationship between
compulsion and habits?



sequential decision task
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(Daw et al Neuron 2011)




idea

Are top-stage valuations
mediated by bottom-stage
states?

Example: rare transition at
top level, followed by win

e Which top-stage action is
now favored?




predictions

direct reinforcement
ignores transition structure

model-based planning
respects transition structure
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17 subs x 201 trials each

reinforcement

B common
Mrare

stay probability
o
~
(0]

0.5

rewarded unrewarded

rewarded

- results reject pure reinforcement models

— suggest mixture of planning and
inforcement processes

unrewarded

reward: p<le-8
reward x rare: p<5e-5
(mixed effects logit)

planning

rewarded unrewarded

(Daw et al Neuron 2011)



data

17 subs x 201 trials each

reward: p<le-8
reward x rare: p<5e-5
(mixed effects logit)

effect size

planning

reinforcement
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rewarded unrewarded ~ rewarded unrewarded

(Daw et al Neuron 2011)



What controls the tradeoff
between these two sorts of
learning?



effect size
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dual task
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based: p< .05 -
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(Otto et al Psych Science, 2013)
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Also:

Development & aging (Decker ea, 2016;
Eppinger ea 2013)

|IQ (Schad ea 2014; Gillan ea 2016)

cognitive control (Otto ea 2015)

PFC TMS (Smittenaar ea 2013)

COMT (PFC DA) genotype (Doll ea 2016)
Parkinson’s disease & meds (Sharp ea 2016;
Wunderlich ea 2012)

dopamine PET (Desserno ea 2015)
psychopathology (Voon ea 2014, Gillan ea 2016)



what are the neural
mechanisms underlying this
evaluation?

Is model-based learning really
decision by simulation?



decodable stimuli
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(Doll, Duncan, Simon, Shohamy & Daw Nature Neuroscience 2015)



catch trials

(Doll, Duncan, Simon, Shohamy & Daw Nature Neuroscience 2015)



prospection (category selective ctx)  RPE (ventral putamen)
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Signatures of two dissociable neural evaluation mechanisms

1. forward search
2. error-driven updating

which have the expected relationships to choice behavior

- is this really related to compulsion?



how do these change over
development?
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see also Eppinger et al. (2013) on aging
(Decker, Otto, Daw & Hartley, Psych Science 2016)



not a failure to build model
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Is model-based learning related
to disorders of compulsion?

Claire Gillan




effect size
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however...
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the crisis in psychiatry

this may reflect a more general problem with
psychiatric research — and psychiatric diagnoses

— co-morbidity, heterogeneity

— push toward dimensional, symptom-based view
— hope this will clarify etiology, neural basis

in a general population sample, look for evidence
that this relationship is:

— graded/dimensional

— generalizes across diagnoses (“transdiagnostic”)
— yet is also specific to compulsive aspect



Large-scale online testing

Amazon Mechanical Turk



Experiment

1. Model-based learning task 3. 1Q, age and gender
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2. Self-Report Clinical Scales

OCD: OCl-r (foa et al, 2002)
Depression: SDS (zung, 1965)
Anxiety: STAIl-trait (Spielberger, 1983)



N=1413 Measures

Putatively Non-Compulsive Putatively Compulsive
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(Gillan, Kosinski, Whelan, Phelps & Daw, eLife 2016)



N=1413 Experiment 2

But... this just illustrates the
categorization problem
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Factor Analysis

Inter-correlation of 209
individual self-report
items

Questionnaire

" Eating Disorders

B Impulsivity
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Questionnaire

Factor 2: Compulsivity Il Eating Disorders

B Impulsivity

o | B OCD

“I am preoccupied with the thought of having 1 Alcohol Misuse

fat on my body” Schizotypy

=DepreSS|on
y : ” “I have disturbing thoughts” Trait Anxiety
| have racing thoughts Bl Apathy

Do you often have difficulty in controlling your thoughts? BSocial Anxiety

“I repeatedly check doors, windows, drawers, etc.”

“I have gone on eating binges where | feel that |
may not be able to stop”
“How often ... have you needed a firstdrinkin

“I buy things on impulse”
y 8 P the morning to get yourself going ...?”



Factor 3: Social Withdrawal

“How often do you have 6 or more drinks on one

occasion?”

“I do not plan tasks carefully”

0.5 -

0.0

Do you dread going into a room when other
people have gathered and are talking?

Questionnaire

| Eating Disorders

B Impulsivity

B OCD

I Alcohol Misuse
Schizotypy

W Depression

W Trait Anxiety

B Apathy

I Social Anxiety

n M

“Meeting strangers”

“Being the center of attention”
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(Gillan, Kosinski, Whelan, Phelps & Daw, eLife 2016)



MB learning is selectively linked to compulsion, across
diagnoses
* similar results from fully supervised, item-level
analysis
* also effects of age, 1Q

Compulsive thoughts and behaviors cluster in factor
analysis
* relevant to obsessions vs. compulsions?

Of course these are just some symptom scales, and just one
behavioral task

e progressively refine both sides

 promise of large-scale online testing more broadly



patent race game

A Game Presentation Decision Feedback
You . . . - . \'gu . . Ygu . .
" ’ Subject invests 3 i Opponent invests 2
Opponent [l Il I I Opponent Il Il I Oppigneat] ] oo
_ Endowment portion Porenu al prize Loses 3 from endowment Subject wins prize
Payoff .....DDDDE Payoff | ..DDDDD Payoff .......
HEEnN LIO000 HNEEN
Time 4 # f >
Game Decision Feedback

invest a portion of endowment, win prize if you invest more than opponent

* repeated play(80 trials) againstreplayedinvestments from previous subjects
 mixed strategy equilibrium

* Jlearning(e.g. about opponents’ move distribution, or which moves work)

Elana Meer; Lindsay Hunter; Ming Hsu



patent race game

A Game Presentation Decision Feedback
o | | [ ] You M 2 You Wl i
’ ‘ Subject invests 3 i Opponent invests 2
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Game Decision Feedback

theory, EWA (Camerer & Ho, 1999) nests:

1. (model-free) “reinforcement learning”, about reward received (or not) after actions
2. (model-based) “belief learning” about opponents’ likely strategies, (& best-respond)

in this setting, (2) is algebraically equivalentto counterfactual learning about foregone
rewards, governed by free parameter 6:

Qr41(ct) = ¢ - Q:(c) +r(cy) for chosen action
Qrr1(ue) = ¢ - Qe(uy) + 6 - r(uy) for unchosen actions

Elana Meer; Lindsay Hunter; Ming Hsu



patent race game
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(Zhu et al., PNAS 2012)

In a series of papers using EWA and games like this, Ming Hsu & colleagues (2012, 2014,
2015) have shown evidence for a similar two-system story as with MDPs

 fMRI dissociation between reward and belief learning (striatum, PFC)

* individual differences (striatal vs PFC dopamine genes, aging)

Due to social framing, this seemed like a strong candidate to follow up on social anxiety
effects on model-based learning



preliminary results

N=366, Turk sample
— social anxiety, IQ (ravens matrices), 80 trials of patent race
— fit EWA model

parameter 6 (rel. strength of MB) increasing in anxiety (p<.05)
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Elana Meer; Lindsay Hunter; Ming Hsu



Question: how to account for the goal-directed nature of compulsion?

hybrids and MB/MF interactions
 Dyna & replay (Gershman et al. 2014)
* Pruning/truncation (Keramati & Dayan)
e Successor representation (Daw & Dayan 2015; Russek et al under review)
 MF goal selection (Cushman and Morris, 2015)
« MB as reoriented toward object of compulsion, rather than generally deficient
(Voon et al. 2015)



Interactions

MB valuations 2 Dopamine Dopamine = MB valuation
(& PEs) B

I :

Model-based Beta coefficient
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3.

conclusions

distinguish two reinforcement learning computations in the
human brain

— linked with two distinct neural mechanisms

— forward search vs error-driven updating

— fills in detail behind important dual-system models

model-based learning is linked to compulsion (& tentatively,
social anxiety)

— generalizes across disorders but is specific to a subset

— broad usefulness of large scale online testing in psychiatry

many future questions

— can we understand neural mechanism for model-based computation
in finer detail? (animals!)

— how does interaction work? (important e.g. for drugs)

— does this give us a handle on other dual-system phenomena and
frameworks, e.g. self-control, time discounting?
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